КООРДИНАЦИОННАЯ ХИМИЯ Том 10 - вып. 3 - 1984

УДК 541.49 + 541.572.54

САВРАНСКИЙ Л. И., МЕРОШНЕКОВ О. Н., ПЕЛИПЕНКО А. Т., ШЕПТУН В. Л.

ЭЛЕКТРОННОЕ СТРОЕНИЕ И СВОЙСТВА РАЗНОЛИГАНДНЫХ КОМПЛЕКСОВ Со(II) И Ni(II) С 1,10-ФЕНАНТРОЛИНОМ, НИРИДИНОМ (4-АМИНОПИРИДИНОМ) И ВОДОЙ ВО ВНУТРЕНИЕЙ СФЕРЕ

Исследование устойчивости и условий образования виридин- и 4-аминопиридныфенантролинатных комплексов перекодных металлов в водноспиртовой среде [1] показало, что устойчивость комплексов зависит от соотношения количества молекул 1,10-фенантролияв и монодентатного освования - пиридина или 4-аминопиридина. Что касается монофенантролинатных комплексов, то оказалось, что комплексы никеля(II) устойчивы пезависимо от типа монодентатного основания. Комплексы Co(II), содержащие во внутренней сфере по молекуле фенантролина и 4-аминопарадина, оказалась пеустойчивыми. Обнаруженные экспериментально [1] особенности проявления взаниного влияния исследуются в настоящей работе с точки зрения электронного строения этих комплексов. Рассчитаны соединения MPhenL(H₀O)₃ (M = Co(II) или Ni(II), Phen - 1,10фенантролин, L — пиридил или 4-аминопиридин) в приближении ППДП/2 с параметризацией Кляка [2]. Длины связей и налентные углы выбраны жак средние значения для подобных соединений (3, 4). Расчет проведен для двух пространственных конфигураций (рисунов). В одном случае (конфигурация I), пиридин (4-аминопиридин) располагался так, что его ось второго порядка находилась в плосмости, в которой расположена моленула фенентролина. Плоскость молекулы пиридине (4-аминопиридина) новернута в плоскости фенантролина на 60°, что обеспечивает расстояние жижду атомами координированных молекул не меньша, чем сумма вапдер-ваальсовых радиусов. Во втором случае (конфигурация II) ось второго порядка пяридина (4-аминопиридина) перпеядикулярна в плосности феневтролине. Все донорные атомы лигендов в обенх конфигурациях удалены от металла на 2,00 Å и расположевы вокруг металла по вершинам слегка искаженного октаздра.

В табл. 1, 2 приведопы рассчитавные значения ковалентных составлающих энергий двухдентровых взаимодействий (КСЭ) [5], ин которых можно сделать следующие выводы.

1. В комплексах с пространственной конфигурацией I по сравнению о 11 имеется четко выраженное взаимное влияние лигандов, проявляюпроизна, и расположенным в транс-положении к нему атомом азота транаца) и расположенным в транс-положении к нему атомом азота фенантропина. Это справедляво для обоих металдов. Интересно, что супестовное изменение основности монодентатных оснований (рК^а пиридина 5,2, рК^а 4-аминопиридина 9,2), котя в небольшой мере, но однозначно сказывается на этих эффектах. Из данных табл. 1 и 2 видно, что увеличение основности монодентатного основания примодит к ослаблению связи Со(II) с обоими атомами азота фенантролина при сохранении более врочной связи с транс-атомом авота. В случае соединений Ni(II) ИСЭ снаям метала с транс-атомом авота фенантролина одинакова для обоих моводентативых оснований.

 Существенный вклад в КСЭ связывания металл — февантролин вносит не только взаимодействие металла с докорными атомами, но и с

350

Таблица 1

Знаргии (а. е.) двукцентровых коналентных излиморействий металла с атомами фонантролена, составляющими ближайшее окружение металла

Компленс [M(Phen) (L) (Ц ₂ O) ₄]+				Атомы фенантроляна **						
м	L.ª	БРОСТРАН- СТВОЛНАЯ КОНФИГУРА- СВЯ	N (2)	C (3)	G(12)	N(13)	C(14)	C(15)	Σ' ***	E.
Co(II)	Ру	1	-0,96	-0,11	-0,10 -0,11	-0,94 -0, 94	-0,20 -0,19	-0,20 -0,19	-2,51 -2,48	-2,58
6	APy	1 II	-0,95	-0,11	-0,10	-0,93 -0,93	-0,20 0,19	-0,20 -0,19	-2,49 -2,48	-2,54
Ni (11)	Ру	I 11	-1,01	-0,10 -0,10	-0,10 -0,10	$-1.00 \\ -1.00$	-0.20 -0,19	-0,20 -0,19	-2, 61 -2,58	-2,66
	APy		-1.01	-0,10 -0,10	-0,10	-0,99	-0.20 -0,19	0,20 0,19	-2,60 -2,58	-2,65

Ру — пиридин, АРу — 4-ямялотириялия. "" Еслириа атомов ссотретствуют рисунку.
Сумива КСВ скалей метадла с атомяния сложнайшего окружению, Х" – аналотичная сумиваю в бите и томия федаториятия.

Таблица 2

Энергин (a. e.) двукцентроных ковалентных казамодействий металля с атомами езота в ближайшими к нему этомеми углерода пирадина, 4-аменопиридина и атомам киезорода воды

13	Атомы Лиганда L				Атом				
м	L	пространст- венная кон- фигурацая	N	C.	ΣI **	EU	на слорода воды	Em	214
Co(II)	Py	I	-0,97	-0,16 -0,17	-1,30 -1,26	-1,37 -1,33	-0,78 -0,79	-0,87	-5,67
15 0	АРу	n I	-0,98 -0,97	-0,16	-1,31 -1,28	-1,38 -1,35	-0,78 -0,78	-0,87 -0,87	-5, 64 -5, 61
Ni(II)	Ру	1 II	-1,02 -1,01	0,16 0,16	-1,34 -1,31	-1,40 -1,37	-0,82 -0,82	0,90 0,90	-5,65 -5,62
1-2-0	АРу	1 II	-1,03	-0.16	-1,35 -1,32	-1,41	-0,82 -0,82	-0,90	-5,85

⁴ Для двух атомов углерода поннецено средное нивчение. ⁴⁴ Е¹ — сумма КСА металия с тремя ближнийпонния отомами (21) — со всемя атомами) пирацията (4-вызнонопирациям), 211 вналозичная величина для святей с атомами молокулы воды, 219 — для святей со всемя дигандами.

некоторыми другими, расположенными достаточно близко к металлу. Так, вклад КСЭ для связей металла с четырьмя атомами углерода молекулы 1,10-фенантролина, принадлежащих съдивминовой группировке - CH=N-CH=CH-N-CH -, составляет около 30% КСЭ связи мепла с двумя донорными атомами азота фенантролина. Заметный вклад 60% КСЭ связи металл - азот) вносит взаимодействие металла с двуми съзгомами углерода в пиридине (табл. 2).

3. Для обоих металлов в обеих пространственных формах КСЭ связи металл — акот уменьшается в ряду: 4-аминопиридин > пиридин > 1,10фенантролип. Хотя различия энергий в указанном ряду малы, можно утверждать, что л-система фенантролина не укеличивает способность этомов азота к ковалентному связыванию. Видно также, что КСЭ связи металл — фенантролия меньше удвоенного элачения аналогичной величивы для пиридина. Так что в случае рассматриваемых соединений каланый эффект яюбо отсутствует, либо обусловляен энтролийным вкладом.

Пространственные формы рассчитанных комплексов

4. Наибольшие величины суммы КСЭ связей металл — литанд получены для пространственной модели І. В случае соединений Со(11) замена паридана 4-аминопириданом приводит к дестабиливации системы для обеах пространственных моделей, тогда как для соединений Ni(11) такая замена либо не каменяет энергии (модель І), либо приводит к стабиливации (модель ІІ, табо не каменяет энергии (модель І), либо приводит к стабиливации (модель ІІ, табо не каменяет энергии (модель І), либо приводит к стабиливании (модель ІІ, табо не каменяет знергии (модель І), либо приводит к стабиливании (модель ІІ, табо не каменяет внергии (модель І), либо приводит к стабиливании (модель ІІ, табо не каменяет внергии (модель ІІ, табо не каменяет комплеки с нашим акспериментальным исследованием (11), где были выделены комплексы кобальта.

5. Аналия поорбитальных вкладов в КСЭ связи неталия с различными атомами лигандов (табл. 3) показывает, что вименение внергии связи исталла с атомами заота фенантролина, происходящее при намене монодеататного основания, обусловлено на 80% изманением о-составляющей.

Таблица 8

IM CPA		IAM AN	# - #	ци Щ. м. м.	-M - N	т М – N	
1.4 M	L	простравот- венная нон- фигурация		$e_{\pi} = e_{\pi}$			
Go (11)	Py .	1	-0,055	-0,004	0,050 0,053	-0,001 -0,887	
2942201092	KPy	11	-0,056	-0,004	-0,058 -0,058	-0,892 -0,877	
Ni (11)	Ру	n	-0,050	-0,003	-0,059	~0,951 -0.947	
4	АРу	a II	-0.056	-0,003	-0,059	-0.951 -0.947	

Поорбитальные вкладка (G. C.) здержи да спонтровых коналентных заямподействий махания с втолных зарта фенантролина

Таблица 4

Состав надонущования и BMO, их клосленность и велентных литиность для парадносого францения свободного фонануродные и фенануродные в компленсе (Co (Pben) (Py) (H₃O),]³⁺ (пространственных конфитурация I)

2	1.5	June		Валент-				
экизанцаоон:	C(B)	0(10)	C(III	¹ C(12)	C(13)	C (14)	BMO	Bar Bryrd Boctl
Фенантро- лян	0,27 0,84 0,66	0,59 0,16 0,20	0,28 0,22 8,23	0,34 0,22 0,25	0,50 0,19 0,14	0.27 0.85 0.63	0,01 0.17 1,62	0.03 0,31 0,33
Комплекс	0,28 0,64 0,65 0,48 0,48	0,58 0,11 0,21 0,33 0,51	0,15 0,24 0,20 0,09 0,64	0,47 0,18 0,25 0,43 0,43	0,53 0,22 0,13 0,77 0,09	0,25 0,67 0,64 0,27 0,01	0.02 0.20 1.82 1.96 2.00	0,03 0,35 0,33 0,08 0,08

Таков же относительный вклад о- и л-составляющих для энергий взаимодействия металла с ближайшими атомами углерода молекулы фенентролина. Следует также отметить, что эти изменения энергии происходят симбатно для обеих составляющих.

В табл. 4 приведены валентеме активности (ВА) [6] и вид залентных молекулярных орбиталей (ВМО) пиридинового фрагмента свободной и координированной молокул фенантролина. Как следует на втих данных, НА пиридинового фрагмента возрастает при связывании фенантролина металлом. Это возрастание обусловлено главным образом молекулярной орбиталью, в которую основной вклад нносит АО азота. Заселенность этой ВМО составляет 1.96. Вместе с тем сроди привенных в табл. 4 валентновитивных МО комплекса нет орбиталей, отличающихся от соответствующих орбиталей свободного фенантролина и на которые церанца бы ведостающая на рассматриваютой ВМО электронная и потность — 0,04.

Таким образом, можно предположить, что отмеченное выше нозрастание ВА пиридинового фрагмента обусдовлено переносом *п*-электронной плотвости с февантролина на металл. Следует подчеркнуть также, что в

Таблица 5

Состав валентнойктивных л-ВМО фензитролина и комплексе (Co(Phen) (Py) (H₂O) «Р» (пространственная нонфигурация I) и их заселенность и залентная активность

Атамы феналтролена									Валева-
N(2)	C (3)	C (5)	G(10)	C(12)	N(13)	C(14)	C(15)	Заселен- ность ВМО	100175
0,45 0,53 0,50	0,37 0,31 0,21	0,27 0,16 0,15	0,28 0.18 0.15	0,38 0,34 0,25	0,46 0,53 0,51	0,25 0,30 0,18	0.26 0.30 0.25	0, 01 1,93 2,00	0,01 0,13 0,01

пиридиневом фрагменте координированного фенантролица орбитали меньше локализованы и уже не соответствуют граничной структуре с локализоваеными двойными связями, как это карактерно для свободной молекулы фенантролина. Валевтная активность фенантролина равна 1,5 (ВА" = 1,35, ВА" = 0,45) и практически не зависит от состава и пространственного строевия остальной часты молекул рассматриваемых вомплевсов. В табл. 5 приведен состав валентноактивных л-ВМО фенантродинового фрагмента в комплексе. Видно, что основной вклад в ВА вносят лишь атомы фенантролина, составляющие ближайшее окружение металла в координационной сфере. Валентная активность пиридина в комплексах Co(II) не зависет от его пространственного расположения, тогда кан для 4-аминопиридина эта величина немного возрастает при переходе от структуры II к структуре 1. В соединениях Ni(II) как 4-аминопаридин, так и пиридин имеют несколько большую ВА в пространственных формах I по сравнению с формами II - 0,9 и 0,8 соответственно. В целом же ВА фенантролина меньше удвоенной ведичены ВА пиридика (4-аминопиридина), что так же, как и рассмотренные выше энергетические характеристыки, говорит либо об отсутствии адесь хелатного аффекта, либо о его энтропийной природе.

Аяалыа распределения электронной плотности в соединениях позволяет сделать тание выводы. Во-первых, в одинаконых пространственных конфисурациях 4-аманопиридин по сравнению с пириднком видакает поняжение электронной илотности на молекуле фенантролина. Наиболее силько этот аффект проявляется и комплексах с пространственной конфигурацией I. Кроме того, в соединениях Co(II) это влияние скльнее, чем в соединениях Ni(II). Интереспо, что симбатно с понижением (повышением) электронной плотности на фенантролине вналогичные изменения происгодят на перидено иля 4-аминопиридине. Из полученных результатов выдко, что общее изменению зарядов на лигандах значительно больше изменеция л-плотности. Интереско также, что суммарная л-электронная имотность в координированном фенантролине меньше 14, что равно л-алектронной плотности в свободной молокуле фонентролны. Так что нет инжиних оснований гонорить о п-виденторных свойствах фенантролова (активных л-ванимодействиях) и втих соединениях.

Та там образом, как внергетические харантеристики, так и распределения влентровной плотности свидетельствуют о заметном взаимном илинния лигандов в рассмотренных комплексах. Назимное влияние произдателя в одновременном упрочнении связи металля с расположенники в израмс-положенных доворными атомыми. При этом члектронная плотность на обонх лигандах понимается. Интересно, что теное проявтение ваниного влияния лигандоя существенно отличается от опесанкоро, ками ранее [7] для разнолигандных комплексов этих же металлев с дитискарбаминовой и дитисфосфорной кислотами.

ЛИТЕРАТУРА

- Визитенко А. Т., Саеранский Л. Н., Мирошников О. Ч. Коорд. химия, 1975, т. 1, № 9, с. 1243.
- 2. Clack D. W., Hush N. S., Yandle J. R. J. Cham. Phys., 1972, v. 57, p. 3503.
- 3. Итоги вауки и техники. Красталлохимия. М.: ВИНИТИ, 1970, с. 220.
- Molecular structure by diffraction methods. A specialist period, report the Chem. Soc. V. 2, London: Chem. Soc., 1974, p. 523.
- 5. Fischer H., Kollmar H. Theor. Chim. Acta, 1970, v. 16, p. 163.
- Баранований В. Н. и др. Методы расчета электронной структуры атомов и моленул. Л.: ЛГУ, 1975.
- Пилитенно А. Т., Саеранский Л. И., Зубенко А. И. Коорд. иминя, 1982, т. 8, № 7, с. 897.

Киевский госудерственный унивёрсятся им. Т. Г. Шевчендо Поступила в редакцию 11.1.1983