Вып. 3

УДК 548.30

КЛЕВЦОВ П. В., ПЕРЕПЕЛИЦА А. П., СИНКЕВИЧ А. В.

О КРИСТАЛЛИЧЕСКИХ СТРУКТУРАХ И ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТИ ДВОЙНЫХ ВОЛЬФРАМАТОВ МЕДИ (I) И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ, *CuLn(WO*₄)₂

Двойные вольфраматы щелочных (Li, Na, K, Rb, Cs) и всевозможных трехвалентных металлов состава $M^+R^{3+}(WO_4)_2$ изучены достаточно широко. В [1] систематизированы результаты исследований кристаллической структуры и полиморфизма этих соединений и прослежено влияние на формирование структуры главным образом размерного фактора катионов *M*+ и *R*³⁺ и температуры. Аналогичные соединения с одновалентной медью вызывают интерес, в частности, тем что они являются удачным примером, позволяющим качественно выявить влияние на структуру поляризационного фактора Cu+. Катион Cu⁺, будучи по размеру равным или близким к Na⁺, в отличие от последнего обладает 18электронной внешней оболочкой и является сильно поляризующим, способным вызывать сокращение межатомных расстояний и понижение координационного числа [2] (двойные вольфраматы натрий-редкоземельных $NaLn(WO_4)_2$ элементов для всего ряда *Ln* кристаллизуются в структуре шеелита CaWO₄, к.ч. *Na*, *Ln* равпо 8).

Рис.1. Инфракрасные спектры поглощения *a* – CuNd(WO₄)₂, навеска 2,8 мг; *a*' – LiNd(WO₄)₂, навеска 3,0 мг; *б* – CuTm(WO₄)₂, навеска 2,5 мг; *б*' – β-LiEr(WO₄)₂, навеска 3,8 мг. Спектры записаны на спектрометре UR-10 Рис. 2. Кривые ДТА CuCd(WO₄)₂

Соединение CuLn(WO₄)₂ (Ln = P3Э, Y) получены методом твердофазного синтеза из составных окислов Cu₂O+Ln₂O₃+4WO₃ (для Ln = Ce, Pr и Tb через предварительно приготовленные Ln₂(WO₄)₃) в вакууме, во избежание процесса окисления на воздухе Cu³⁺ до Cu²⁺) при температурах 600-700 °C. Отсутствие в синтезированных соединениях двухвалентной меди проконтролировано методом ЭПР.

Дифрактограммы CuLn(WO₄)₂ записаны на аппаратах УРС-50И и (или) ДРОН-2 на CuK_α-излучении (образцы содержали кристаллический кремний или германий в качестве эталона). Сравнительный анализ дифрактограмм и инфракрасных спектров поглощения (рис. 1) привел к предварительному заключению о том, что двойные вольфраматы CuLn(WO₄)₂ кристаллизуются в двух структурных типах: триклинном α-LiPr(WO₄)₂ [3] для Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy и моноклинном β-LiTb(WO)₂ [4] для Ln = Ho, Er, Tm,

Yb, Lu и Y (вещества различаются соответственно по цвету: светлые красно-оранжевые с незначительными нюансами и почти черные). Порошковые рентгенограммы проиндицированы с учетом интенсивностей отражения предполагаемого прототипа и получены согласующиеся результаты, указывающие на изоструктурность данных соединений. Дифрактограммы для представителей обеих изоструктурных групп CuLa(WO₄)₂ и CuHo(WO₄)₂ приведены в табл. 1 и 2 Параметры элементарных ячеек уточнены МНК с помощью ЭВМ по программе [5]. Результаты даны в табл. 3.

Таблица 1

			- <u></u>	+/2	
hkl	d, Á	Ι	hkl	d, Á	Ι
010	6,540	3	302	1,968	5
001	6,300	8	031,231	1,926	20
100	6,064	25	$14\overline{1}$	1,902	10
$10\overline{1}$	5,147	20	013, 122	1,878	18
011	4,085	30	421	1,851	7
101	3,871	10	220	1,847	7
211	3,745	10	240, 243	1,818	13
120	3,642	40	224	0,810	40
221	3,434	17	431	1,808	40
210	3,392	35	221,212,301	1,792	25
020	3,267	35	433,411,221	1,758	25
$02\overline{1}$	3,238	55	412	1,744	20
$10\overline{2}$	3,180	40	423,234	1,740	17
002,012,122	3,154	70	113	1,737	13
222,200	3,036	100	213	1,689	2
220	2,996	20	$04\overline{1}$	1,682	15
121	2,691	10	331	1,679	13
021	2,660	10	132	1,654	12
231	2,626	25	123	1,651	15
012	2,614	20	$10\overline{4}$	1,645	15
022	2,601	30	312	1,639	13
202	2,570	35	$01\overline{4}$	1,625	10
102	2,530	15	032	1,623	10
321	2,495	4	252,204	1,593	13
120	2,458	6	241	1,575	9
112	2,449	6	$02\overline{4}$	1,573	10
322,130	2,426	15	222,251	1,571	10
132	2,411	5	312, 232	1,562	12
_210	2,376	12	353,35 <u>1</u>	1,557	10
112,112	2,360	12	<u>1</u> 23	1,549	6
223	2,347	10	$40\overline{2}$	1,5455	6
121	2,343	10	$42\overline{4}$	1,5343	7
230	2,334	5	253	1,5194	7
211	2,326	3	452,532	1,5140	10
123	2,303	15	453	1,4973	8
213	2,287	5	440	1,4944	7
332	2,261	2	151,421	1,4858	4
310,031	2,237	25	213,522	1,4805	3
103	2,184	5	043,411	1,4720	10
030	2,178	7	114	1,4689	10
233	2,138	10	313	1,4661	10

Рентгенографические данные CuLa(WO₄)₂

$\begin{array}{c} 2\overline{1}1\\ 30\overline{1}\\ 32\overline{3}\\ 022\\ 131,300\\ 20\overline{3},13\overline{3}\\ 02\overline{3}\\ 122,330\end{array}$	2,133 2,100 2,087 2,039 2,023 2,007 2,001 1,996	10 7 4 18 13 15 18	$\begin{array}{c} 250,53\overline{1}\\ 14\overline{4}\\ 54\overline{3}\\ 30\overline{4}\\ \overline{2}31\\ 1\overline{1}4,104,35\overline{4}\\ 33\overline{5}\\ 3\overline{1}2 \end{array}$	1,4617 1,4592 1,4566 1,4544 1,4347 1,4331 1,4314 1,4150	10 10 10 10 12 14 15 6
---	--	--------------------------------------	---	--	------------------------

Таким образом, двойные вольфраматы CuLn(WO₄)₂ кристаллизуется в структурных типах, характерных для литий-редкозезмельных внвлогов и являющихся производными структур шеелита и вольфрамита [1, 3]. В родственной шеелиту структуре α -LiPr(WO₄)₂ (ему изоструктурны LiLn(WO₄)₂ с Ln=La-Sm при температурах ниже 720-670 °C соответственно) координация (по кислороду) редкоземельного иона сохраняется «шеелитовой» (к.ч. 8), а одновалентный металл расположен в тетраэдре и значительно смещен от его центра к одной из граней [3]. Следует полагать, что в двойных вольфраматах CuLn(WO₄)₂ (Ln=Ho-Lu, Y), отнесенных к вольфрамито-подобному типу β-LiYb(WO₄)₂ (по сравнению с вольфрамитом (Fe, Mn)WO₄ удвоен параметр α из-за кристаллографически независимого расположения M⁺ и Ln^{3+}), все катионы, включая Cu^+ , координированы по кислороду октаэдрически. Из табл. 3 видно, что параметры b и c элементарной ячейки в ряду Ln=Y, Ho-Ln остаются постоянными (в пределах ошибки измерения, $\pm 0,01$) и очень близки к параметрам для LiLn(WO₄)₂ [6, 7]. Этот факт является следствием особенностей кристаллической структуры, построенной из слоев (100) (четыре на трансляцию а) плотнейшей гексагональной упаковки атомов кислорода (половина октаэдрических пустот в них заполнена катионами [4]).

Таблица 2

Рентгенографические данные CuHo(WO ₄)2								
hkl	d, Á	Ι	hkl	d, Á	Ι			
010	5,819	10	312	1,834	20			
110,200	5,003	15	$40\overline{2}$	1,832	20			
$10\overline{1}$	4,615	7	230, 421	1,805	35			
101	4,350	7	222, 421	1,740	20			
011,210	3,782	50	231,402	1,711	20			
211	3,105	100	231	1,685	5			
211	2,947	90	520	1,644	4			
020	2,905	40	412	1,639	3			
310	2,889	20	331	1,6053	4			
120	2,791	5	013	1,6035	4			
021,220	2,511	30	610	1,6005	5			
002	2,503	55	521	1,5909	5			
400	2,498	55	331	1,5707	3			
311	2,438	4	213,611	1,5578	20			
121	2,418	2	422	1,5550	20			
202,012,410	2,301	7	032,430	1,5320	7			
221,112	2,213	15	213,611	1,4955	20			
212	2,141	5	232	1,4825	10			
212,411	2,038	7	422	1,4727	7			
312	1,952	10	023,232	1,4477	15			
030	1,938	5	223,621	1,4112	7			
022	1,895	35	041	1,3960	10			
420	1,893	35	710	1.3863	4			

В литий-редкоземельных вольфраматах модификация типа β-LiYb(WO₄)₂ (обнаружена для Ln=Tb-Lu) при понижении температуры (ниже 700-800 °C [7, 8]) испытывает фазовый элементарной переход без изменения общего объема ячейки, связанный с Li^+ Ln^{3+} в октаэдрических пустотах тех перераспределением катионов И же плотноупакованных анионных слоев и изменением в связи с этим направления скольжения (P2/n→P2/c) при сохранении исходной упаковки в рамках той же пространственной группы C_{2h}⁴ (структурный тип NaIn(WO₄)₂ [4]). Наши попытки обнаружить в соединениях CuLn(WO₄)₂ возможный аналогичный полиморфный переход не были успешными. Очевидно, при температурах 450 °C и выше модификация типа β-LiYb(WO₄)₂ в них устойчива, поскольку отжиг двойных вольфраматоа Cu⁺ с Y, Ho, Tm и Yb при этой температуре в течение 100 часов не привел к изменению дифракционной картины.

Развивая аналогию CuLn(WO₄)₂ с LiLn(WO₄)₂, отметим, что хотя все литийредкоземельные вольфраматы при высоких температурах претерпевают полиморфное превращение в структуру тетрагонального шеелита, в которой они стабильны вплоть до температуры плавления (плавятся в интервале 975 (Lu) – 1135 °C (Gd) [6]), полиморфизм в медных вольфраматах не был обнаружен. Причину следует усматривать в термической неустойчивости этих соединении, при нагревании на воздухе окисляющихся и разлагающихся в твердой фазе при относительно низких температурах.

Последний вывод сделан на основании экспериментальных исследований CuLn(WO₄)₂ методами дифференциального термического анализа (ДТА, прибор HTP-70, скорость нагревания ~10 град/мин) и высокотемпературной рентгенография (дифрактометр ДРОН-0,5 с приставкой КРВ-1200).

Опыты ДТА проводили до ~1000 °С. Термические кривые для всего ряда соединений характеризуются наличием интенсивного экзотермического эффекта при 630 – 650 °С для CuLn(WO₄)₂ с Ln=La – Dy и при 700-760 °С с Ln = Ho – Lu, Y и одним или несколькими эндотермическими эффектами в области 900 °С. На рис. 2 изображены кривые ДТА для CuGd(WO₄)₂. Характер дифференциальных кривых при относительно низких температурах свидетельствует о том, что процесс окисления в CuLn(WO₄)₂ начинается с 200-300 °С (в гадолиниевом соединении – с ~ 280 °С, рис. 2). Более отчетливые указания па протекание окислительного процесса получены отжигом CuNd(WO₄)₂ при 500 °С в течение 50 час. В результате отжига зафиксировано изменение цвета образца (почернение), а на дифрактограмме – смещения линий, выходящие за пределы ошибки измерения и обусловленные, по всей вероятности, изменением состава до Cu_{1-x}Nd(WO₄)₂.

Дифракционная картина при нагревании качественно изменяется лишь при температурах, отвечающих экзотермическому эффекту, и при последующих охлаждении и повторном нагревании остается неизменной. Анализ дифрактограмм с образцов, предварительно подвергнутых нагреванию до температуры экзотермического эффекта и выше, показал, что образцы представляют собой смесь вольфраматов $Ln_2(WO_4)_2^*$ и $CuWO_{4_x}$ [10].

Следовательно, при температурах 630-760 °С (см. табл. 3) двойные вольфраматы $CuLn(WO_4)_2$ разлагаются в твердой фазе. Вторая изоструктурная группа соединений термически более стабильна, чем первая. Процесс разложения всех соединений сопровождается интенсивным окислением продуктов (очевидно, неустойчивого Cu_2WO_4 , до $CuWO_{4\cdot x}$ *; на некоторых кривых ДТА наблюдается расщепление экзотермического эффекта). Тепловые эффекты при ~ 900 °С относятся к фазовым превращениям продуктов разложения. Наиболее интенсивный, по-видимому, связан с плавлением $CuWO_{4\cdot x}$. Термические свойства двойных вольфраматов $CuLn(WO_4)_2$ существенно усложняют задачу получения их монокристаллов.

Таблица 3

Ln	Структурный	Параметры элементарной ячейки					v, A ³	d _x , г/см ³	Тразл,	
	тип,	<i>a</i> .	<i>b</i> .	С.	α	в	γ		(Z = 2)	$^{\circ}C \pm 15^{\circ}$
	вероятная ф.		- /	- /		1-	/			
	гр.									
La	$\alpha = \text{LiPr}(WO_4)_2,$	7,57	8,07	7,25	114°59'	116°13'	56°33'	321,5	7,24	640
Ce	$C_{1}^{1} - P\overline{1}$	7,52	8,03	7,23	114°58'	116°06'	56°52'	318,7	7,32	640
Pr	-	7,49	8,02	7,22	115°00'	116°06'	56°52'	316,2	7,38	650
Nd	-	7,46	7,99	7,20	115°00'	116°09'	56°51'	313,1	7,49	640
Sm	-	7,39	7,95	7,17	115°01'	116°08'	56°53'	307,1	7,68	640
Eu	-	7,37	7,93	7,15	115°03'	116°09'	560501	304,9	7,78	635
Gd	-	7,34	7,91	7,14	115°05'	116°10'	50 59	302,2	7,88	650
Tb	-	7,31	7,89	7,14	115°13'	116°13'	20-28	299,8	7,98	640
Dy	-	7,27	7,86	7,13	115°20'	116°28'	56°58'	297,6	8,08	630
Y	$\beta = \text{LiYb}(WO_4)_2,$	10,06	5,81	5,02		94°10'	56°58'	292,5	7,39	700
	$C_{2h}^4 - P2/n$									
Но	-	10,03	5,81	5,02		94° 06'		291,8	8,27	710
Er	-	10,01	5,815	5,01		93°50'		291,0	8,32	710
Tm	-	10,01	5,805	5,01		93144'		290,3	8,36	730
Yb	-	9,97	5,80	5,01		93°28'		289,5	8,43	750
Lu		9,91	5,81	5,015		93°08'		288,4	8,49	760

Кристаллографические и термические характеристики CuLn(WO₄)₂

Литература

- 1. П. В. Клевцов, Р. Ф. Клевцова. Ж. структурн. химии, 18, 419, 1977.
- 2. Г. Б. Бокий. Кристаллохимия. «Наука», М., 1971.
- 3. Р. Ф. Клевцова, Л. Ю. Харченко, С. В. Борисов, В. А. Ефремов, П. В. Клевцов. Кристаллография, 24, 446, 1979.
- 4. Р. Ф. Клевцова, Н. В. Белов. Кристаллография, 15, 43. 1970.
- 5. С. Д. Кирик, В. Е. Федоров. Деп. ВИНИТИ. № 3196-77 Деп.
- 6. П. В. Клевцов, Л. П. Козеева. Кристаллография, 15. 57. 1970.
- 7. В. К. Трунов, А. А. Евдокимов. Кристаллография, 19. 994, 1974.
- 8. G. LeFlamm, R. Salmon. Compt. rend., C270, 543, 1970.
- 9. K. Nassau, H. J. Levinstein, G. M. Loiocono. J. Phys. and Chem. Solids, 26, 1805, 1965.
- 10. E. Gebert, L. Kihlborg. Acta chem. scand., 21, 2575, 1967.

Институт неорганической химии СО АН СССР Киевский государственный университет Поступила в редакцию 16.01.1979 С доработки 18.04.1979