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The problem of synthesis of minimax control for the dyna-
mic, described by the system of differential equations (taking
into account the state, controls, perturbations and initial con-
ditions, with the given equation of observation inclusive) of
objects functioning in accordance with the integral-quadratic
quality criterion in uncertainty is solved in the work.

External perturbations, errors, and initial conditions were
assumed to belong to a number of uncertainties. The task of
finding optimal control in the form of a feedback object that
minimizes the performance criterion is presented in the form of
a minimum maximal uncertainty control problem. In the ab-
sence of ready-made solution paths, this problem is reduced to
a H*-control problem under the most unfavorable disturbances,
and in addition to a dynamic game problem with zero sum and
a certain price for the game, and a strategy for solving it is
proposed that offers a way to new results.

The problem of finding the optimal control and the initial
state that maximize the quality criterion is considered in the
framework of the optimization problem solved by the Lagrange
multiplier method after introducing the auxiliary scalar fun-
ction, the Hamiltonian. It is shown that to find the maximum
value of the criterion, either the necessary condition of the ex-
tremum of the first kind can be used, which depends on the ratio
of the first variation of the criterion and the first variations of the
control vectors and the initial state, or also the necessary con-
dition of the extremum of the second kind, which depends on
the sign of the second variation. For the first and second varia-
tions, formulas are given that can be used for calculations.

It is suggested to solve the control search problem in two
steps: search for an intermediate solution at fixed values of
control vectors and errors, and then search for final optimal
control. Consideration is also given to solving /7*-optimal con-
trol for infinite control time with respect to the signal from the
compensator output, as well as solving the corresponding Ri-
ccati matrix algebraic equations.
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MIHIMAKCHE TA AH*>-ONTUMANBbHE KEPYBAHHA
NIHINHUMM HECTALIIOHAPHUMM CUCTEMAMMU

O. I1. JIo6ok, B. M. I"'onuapenko

Hayionanvhuii ynieepcumem xapuogux mexHoao2it

JI. T'. BixpoBa

IenmpanvHoykpaincorkutl HAYIOHATLHUT MEXHIYHUL YHigepcumem

Y cmammi po3s’asano 3a0avy cunmesy MIHIMAKCHO20 kepyeanHs Ot OUHAMIYHUX,
ONUCAHUX CUCMEMOIO OuGhepeHYIliHUX DIGHAHb (3 YPOXYBAHHAM CMIAHY, KePY8aHb, 30)-
PeHb | NOYAmKOBUX Y MO8, 3 HABEOCHUM DIGHAHHAM CHOCIEPeXCelHsl GKTIOUHO), 00 €k-
mie, Wo QYHKYIOHYIOMb 3 IHMESPATLHO-KEAODAMUYHUM KDUMEPIEM SKOCHI 8 YMOBAX
HeBU3HAYeHOCHI.

Ipunyckanocs, wo 306HiwHI 30yperHs, NOXUOKYU MaA NOYAMKOG] YMOGU HANCHCAMb
MEeGHIll MHOJICUHI HEBUBHAYEHOCMEH. 300a4a NOWLYKY ONMUMAABHO20 KEePYBAHHS
6u2IsL0i 360POMHO20 N0 BUX00Y 00 €KXMd 36 A3KY, AKU MIHIMIZYE Kpumepiii QyHKyio-
HYBAHHS, NPeOCMABIEHA Y 8UST0i MIHIMAKCHOT 3A0a4i ONMUMATLHO20 KePYBAHHS 30
MO8 HegusnaueHocmel. 3a GIOCYMHOCHI 20MOBUX ULISAXI8 D036 A3aHHs NOKA3AHe

36e0enHa yiel 3a0aui 00 3a0aui H” -xepyeanns npu natibinol Hecnpusimaueux 30ype-
HHSX I, KPIM 1020, 00 OUHAMIYHOT i2D060T 3a0a4i 3 HYIbOBOKD CYMOIO MA SUIHAYEHOIO
YiHoI0 epu, HageOeHa cmpamezis ii pO36 SI3aHHS, WO NPONOHYE WX 00 HOBUX pe-
3VILbMAmie.

3a60aHHS NOULYKY ONMUMATBHO2O KEPYBAHHSA | NOYAMKOB020 CIMAHY, W0 MAKCU-
MI3YIOMb KpUumepiti AKOCmi, pO32IIHYMO 8 DPAMKAX ONMuMi3ayiiHol 3adadi, 5Ky
D038’ 13GHO MeMOOOM MHOXNCHUKIG Jlaspandica nicis 66e0eH s OONOMINHCHOT CKaNAPHOT
Qyuryit — eaminemoniana. Ilokazano, wo OAs 3HAXOOICEHHS MAKCUMATBHO2O
3HAYEHHA KPUMEPII0 MOXCe OVMU 6UKOPUCMAHA abO HeoDXIOHA YMOBA excCmpemymy
nepuLozo pooy, wo 3anedcums 6i0 criesionowenHs nepulol eapiayii kxpumepiio ma
nepuiux 8apiayii 6eKMopie KepyeanHs i NOYAMKO8020 CIAHY, abo HeoOXiOHa ymoea
exCmpeMyMy Opy2020 pody, o 3anedcums 6i0 3Haxa Opyeoi eapiayii. J[na nepuiux i
Opyeux eapiayiii HA8eOeHO POPMYIU, AKI MONCYMb BUKOPUCMOBYBAMUCS Ol PO3pA-
XYHKIB.

3anpononosaHo 3a0a4y NOULYKY Kepye8anHs pO36 A3yeamy 6 08a emanu: NOULYK
MPOMIJICHO20 PO38°A3KY NpU (PIKCOBAHUX FHAYEHHAX 6eKMOPI8 KePY8aHHA ma No-
Xubku i HACMYNHUL NOWLYK OCIAMOYHO20 ONMUMATLHO20 KepyeanHs. Pozenanymo

maxodxc po3e ’a3anus H” -onmumansnozo kepy6ans Ha HeCKIHYeHHOMY Yaci 3 ypa-
XYBAHHAM CUSHATY 3 BUXOOY KOMNEHCAMOpd, A MAKONC PO36 A3AHHS 8ION0GIOHUX
MampuyHux aneebpaiunux pisusns muny Pikammi.

Karwwuoei croea: minimaxcue xepysanis, pooacmui pecyasmopu, Cucmemy 3 He-
BUHAYEHOCHAMU, ONMUMIBAYISL, MAMPUYHA opMAL.

Formulation of the problem. Initially, the main results of studies of linear auto-
matic control systems were the notion of stability and its criteria based on characteristic
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polynomials. Subsequently, with the development of radio engineering and electronic
automation systems, frequency research methods, which later expanded to impulse,
discrete, and nonlinear systems in connection with the development of computing,
became the main ones. The advancement of astronautics has led to the study of
automatic systems in the state of space, the idea of optimizing control systems with
the simultancous optimization of their quality indicators.

Subsequent progress has made it possible to combine frequency with methods of
state space research, which in addition to optimization has made it possible to solve
problems with any uncertainties — robust control. However, the uncertainty of the
frequency response of control objects is limited in the — norm and can be specified
in both parametric and matrix form when described in the state space [1].

For uncertainties, it is fruitful to apply a minimax approach when the optimal
controller is in the state of the object, which operates under uncertainty so that it
minimizes the maximum error (deviation of the current state of the system from a
given or desired one) from the set of possible values taking into account the most
unfavorable perturbations that can affect an object or system. However, the solution
to this problem is not always obvious [2], and its search requires more research.

Consider a dynamic object described by the following system of differential
equations [3]

ax(

70 = A()xX(t) + B@Ou(@) + E,ew(r), 1, <t <T,

x (to) = F;)x0>
where x(f) € R — state vector, u(f) € R* — control vector, w(f) € R™ — unknown
vector of external perturbations acting on an object, x, € R* — unknown vector of
initial conditions, A(t)e R*™ , B{t)e R*™, F ()e R*™ , I, e R™=™ — given

matrices of corresponding dimensions.
Let the object be monitored by the equation

y(O) =COx(0) + F,(v(1), (2
where y(f)e R” — the result of observation, v(f) € R — unknown measurement
errors, C(1)e R”™, F,(t) e R”™ — known matrices.

Consider and choose the integral-quadratic criterion of quality of functioning of
the object in the form

(D

1) = [ (¥ (G Ox(®) +u" ()G, (Ou(®))dt + X" (T)G x(T), ?3)

)
where G, (HeR™™, G,()eR*™, G, eR*™ — given symmetric weight
matrices, and they are assumed to satisfy the conditions G (1)=G. (£)=0,
G,()=G(1)>0, G, =G} >0.
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Here "7"— means the operation of transposing the matrix, G =G’ — means
that the matrix is symmetric, G >0 (G >0 ) — the condition of positive (inalicnable)
definiteness of the matrix, i.e. the matrix G has positive or inalicnable eigenvalues.

With respect to the unknown vector of external perturbations w(¢), the vector of
measurement errors v(f) and the vector of initial conditions x,, they are assumed to
belong to the next set of permissible perturbations (uncertainties)

O - &1 §=(w(),v(1),x,), w(r) € L,(1,,1),
©L v el D), v e R EPsT [
where the norm ||&|| of a vector-valued function & is defined by the following
expression

4)

T

IE1P=[(w" R, Ow@O) +V" OR (Ww(0))dr +(x, %) R, (x,-%,).  (5)

s
in which R (f)e R™™ , R ()e R*™, R, € R*"™ — are given weight matrices,
andR, () =R ()20, R(H)=R'(1)>0, R,=R. >0, %, € R" is a known vector,
in the vicinity of which is an unknown vector X, of the initial condition [4].

In addition, in (4), we denote by L,(,,7) the set of vector-integrated vector
functions, i.¢.

L0, T) = {f(t) <R [ 010t = ]I 7O d <oo}.
f )

The purpose of the article. The task is to find the optimal control u(r) in the
form of feedback on the output, which minimizes the functional (3) with the most
adverse perturbations & = (w(?),v(¢),x,) acting on the object and in the observation
channel.

Formally, this task can be represented as a minimal maximal control problem

inf sup/(u), (6)

¥ ogeqy
where I(z) — the functional of the form (3), Q, — set of permissible uncertainties
4).
It is convenient to solve this task in the task of H ™ -control. To do this, we first
transform the quality criterion (3) accordingly, and then consider the feasibility of

some assumptions that allow us to solve the problem.
Presenting main material. It is known [5] that any symmetric nonnegative

matrix can be factored, that is, represent in the form G =G"*>.G"* where the
symmetric matrix G"? can be found by means of the Choletsky procedure or through
eigenvalues and matrix vectors G . So let us imagine the weight matrices G_(¢),

G,(®), G, of functional (3) in the form

10 Scientific Works of NUFT 2020. Volume 26, Issue 2
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G, (=G (1)-G*®). G,(n=G1-G*®), G, =G> -G (7

Then criterion (3) can be transformed as follows

Iw) = [(x" ()G (G (0)x(0) +u" (VGL @G (Du(r) ) dt +x" (NG GYx(T) =
%

- IZT(r)z(t)dr +2" (M)z(T) = z |,
f

where checked

2= LGJJZ x(0)

G (r)u(r)] > 20 =077

t
and the norm || z||*is defined for the vector z = [ Z((T))j .
z

The vector z(¢) can be represented and so

GI/Z O
2(f) = ( xo(f )jx(t) n [Gm ([)ju(r) ®)

and interpret it together with the vector z(7') as adjustable quantities.

Since system (1) is linear, there is a linear operator that maps (converts) the vector
of external input influences acting on the system and the observation channel into a
vector of regulated quantities z, that is z= R(§). In view of this, let us transform

expression (6) sup /() , which describes the most negative effect of disturbances on
Eedy

a control object in the sense of increasing the value of criterion (3)
R 2
sup 1w) = sup [ z = sup || RE) P = sup | RE&) [P = sup LREIE (o)
£eQ £y IR <1 Il gero ||E]l
If we denote the last expression (9) by v>, that is

2
up 1RO _
zeo |G|
then we get the obvious inequality

2 2
LR e dEleo) or o<y VEQE0. (10
the left part of which can be interpreted as the relative energy of the output signal
z to the input &, and the right part y> — as the limiting (maximum) value of this
energy.

Inequality (10) underlies the theory of H™ -control [6]. The task of finding a
control u(f) that ensures that inequality (10) is satisfied at a given value y° is known
as the problem of extinguishing extemal perturbations [7]. Thus, the output of the
minimax control problem will now be reduced to the H® - control problem.
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Further, in accordance with the general search method H ™ -control, we introduce
functional

J@.§) = zIF —y* | &IF=1G) —v* |17, (11)
for which we find a point that satisfies the condition
J@,E) :minmg.xJ(u,é). (12)

A vector #” is the desired control in which inequality (10) is given at a given
value y*, and £ is the most adverse perturbation.
If control u is seen as a designer trying to minimize losses and perturbation & as

a nature that resists the designer and tries to maximize his losses, then we have a
dynamic game problem. It belongs to the class of zero-sum differential games and

the price of the game described by the functional J(u,E). If («",£")is the saddle
point of the game task, that is, the point that satisfies the condition
J@ &) <J(u &) <Jw,E),
then relation (12) determines the upper value of the price of the game.
To solve problem (12), we transform pre-function (11). Substituting expressions
(3) and (5) into (11), and given that & = (w,v,x,), we obtain

J,v,w,x,)=x"(1G x(T) = v* (%, _fo)TRo(xo ~%,)+

z (13
+ j [xT (OG,(Ox@) +u’ OG, (Ou(t) - (wT(t)Rw(t)w(t)+vT(t)Rv(t)v(t))]dt (13)
f

Then problem (12) is transformed to the next expression
J(u" v, w",x]) = min max max max.J (u,v,w,x,) . (14)
U v w XO
We solve the problem (14) in two stages:
a) first, solve the intermediate problem
Jo,v)=J(u,v,w",x;) = maxmax J (u,v,w,x,) (15)
voo%

at fixed vectors # and v ;
b) then find the final optimal control by solving the following dynamic game
problem

J@* v ,w',x))=minmax J(u,v,w",x;) . (16)
Once again, we transform the functional (13). To do this, expressing the vector
of interference v(#) from the equation of observations (2) and substituting it in (13),
we obtain
Ty, w,5) A xDE, 7 1%~ %, B, +

IO, 1O, ¢~ (19O +10) -~ COx0) ) e P

where 0
R(t)=(F,' ()" R,(OF' (). (17.1)

12 Scientific Works of NUFT 2020. Volume 26, Issue 2
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Because the optimization parameters of problem (15) are heterogeneous, that is,
w(f) — a vector function and x, — a vector of constants, then to solve this opti-
mization problem we use the methods of variational calculus, namely, we use the
necessary and sufficient conditions of the extremum of the functional (15) in which
both the first and second variations. Let us also dwell on the method of calculating
them.

Variation of the quality criterion of the optimal control problem.

Suppose a controlled object is described by a system of differential equations [8]

. dx(t)
X(f)=——=
() o
x(t,) = h(x,),
where x = x(r) — is the state vector, u =u(r) is the control vector, f(x,u,f), h(x,) —
are the known analytical vector functions of the corresponding dimensions.
Consider the criterion of quality of functioning of the object in the following form

T (1.%0) = @, X(T)) + [ g, 0)clt (19)

f

fxut), f<t<T,

(18)

where ¢(x,,x(7")), g(x,u,t) — given scalar functions.
We consider the problem of finding optimal control u(f) and initial state x, that

maximize the criterion (19) in the optimization problem
J(u,x,) > max. (20)
u,x

To solve it, we use the Lagrange multiplier method, according to which we
introduce as a criterion auxiliary functional

I(u,x,,A) = @(x,,x(T)) +Ig(x,u,t)dt +IKT(t)(f(x,u,t) - X)dt s 21)
iy iy

where A(¢)is the vector column of Lagrange multipliers.
For convenience, we also introduce an auxiliary scalar function H(x,u,A,t)
called the Hamiltonian
HxuMt)=g(x,ut)+ A () f(x,ut). 22)
And taking into account the notation (22), we transform the functional (21)
T, %, 1) = xg, 6(T)) ~ AT (T)x(T) + AT (1, V) +

+j (H (x,u, M)+ A! (r)x(;))dt (23)

fo
To find the maximum value of the functional /(u,x,,1), the necessary condition
of the extremum of the first kind is used, namely, in order for the functional
I(u,x,,))to reach its extreme value, it is necessary for its variation 8/(u,x,,A)=0
to be equal to zero for all variations du(f) and dx,, and they do not rotate simul-
tancously to zero [9].

Hayxosi npayi HYXT 2020. Tom 26, Ne 2 13
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We find the first variation of criterion (23) corresponding to the variations of the
control vector u(f) and the initial condition x, (for fixed ¢, and T')

op(x,,x(T)) N oh' (x,)
ox ox

0 0

ap(x,, x(1) i
[ ox(T) -MT )J ox(T)+ , (24)

+TK—6H (xé:"}””)m(t)J 8x(t)+(—aH (x(;;"}””)j 5u(r)}z

iy
where 8x(f) — a variation of the state x(r) corresponding to the variations of the

Sl(u,xo,k)=( k(to)] ox, +

initial state dx, and control du(r).

Note that upon receipt of variation (24), the following formulas for calculating
the first variations were used

5¢(x0,x(T))=[ﬁ‘WJ 5x, + ( "’(ax(ng ))J Sx(T) .
SH (x.1. 0 1) :(L (x(;:’x”)J 6x(t)+(L (x(;;"x”)) Sul).

s(hT(xo)x(ro))z[ah;xO)x(zo)j axozxf(,o)[ah;fxo)] 8x, .

0
Given the arbitrariness of variations 8x,and 3u(f) (which do not rotate at the same
time simultaneously), the necessary condition of the extremum (8 (u,x,,A) =0) of the
functional /(u,x,,A) implies

6H(x,u,}u,t)+i(t)=0’ 6H(x,u,k,t)=0’ 25)
Ox ou
o T oh" 0 ,x(T
(p(xo,x( )) + (xo) X(l‘o) — 0 , (P(xo x( )) _ 7\4(T) — O , (26)
ox, 0ox, ox(T)
And it follows from (25) that
T
Ox ox ox
T
Ou ou ou

Thus, the initial state x, and control vector u(f) are necessary and certainly
determined from the equations
Sl X(T)) | OH (x,)
ox, ox,

AMt) =0, (29)

14 Scientific Works of NUFT 2020. Volume 26, Issue 2
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OH (x,u,A,1)  0g(x,u,t) . of" (x,u,r)
ou Ou
where vectors x(¢) and A(f) arc exactly the solutions of the following system of
conjugate equations (two-point boundary value problem)

M =0, (30)

{x(r) = f(xu,t), t,<t<T, 31
x(1y) = h(x,),
i) =— afT(x,u,t) A Og(x,u,t) ’
Ox (32)
ATy (P(ax X))
(7)

To solve this optimization problem, a necessary condition of the extremum of the
second kind can also be used [10]: in order for the functional (21) to reach the

maximum value, it is necessary that the second variation &°/(u,x,,A) is non-

positive, that is 8°/(u,x,,A) <0, for all non-zero simultaneously variations of argu-
ments du(t) and &x, .

Note that the second variation 8°1(u,x,,A)is determined by the following square

form
o(op (). )
621(u,x0,l) :6x§ [go(gc—-i-TO}\,(l‘o)J :l&xo +

0 0

o (oo Y
+ox" (T ){Gx(T)(ax(T)j }Sx(T)Jr
Sl e(eH oH
+£{6x (r){ (axj }6x(r)+6x U{@x[@uj }6 u(t) +
+6uT(r){ 0 (‘ij }6 (1) +5u” (r){ @Zj }6 (r)}dt

where H = H (x,u,\,t) is the Hamiltonian function of the form (22).
A sufficient condition of the extremum of a functional 7(u,x,,A) is determined

; (33)

by inequality 87(u,x,,1)<0.
The following vector differentiation formulas were used to find variations [11]:

. . . 0 .
a) if f(x,u)is the scalar function of vector arguments and ol gradient operator

of the form (vector column)

Hayxosi npayi HYXT 2020. Tom 26, Ne 2 15



AUTOMATION AND INFORMATION TECHNOLOGIES

9
axl
s |2
= = b
Ox 20
9
axﬂ
then the gradient of the function f(x,u) is equal to
0 of (x,u)
o, ox,
0 of (x,u)
o (x,u) O - —
fleay =TED 2 ey = 2, | fway=| e |
. o (x,)
axﬂ axﬂ
b) if f(x,u) is the vector function of the vector arguments of the form
SH(xu)
Jo(x.u)
flu)=|"? ;
S (x,u)

then her Jacobian is equal

of, (x,u) Of (x,u) of, (x,u)

o o, ox,
, r | Of,(x,u) Of,(x,u) of,(x,u)
ﬁ(w){%} S R

of, (x,u) Of (x,u) of,(x,u)
ox or, ——axn

¢) if a is a vector of constants, then

%(aT fxw) :%( 7 (xupa) = L) g’”)a.

Recall also the second necessary condition of the extremum of the functional
using the second variation 8°/(u,x,,A) (and which will be used in the future). In
order for the functional (u,x,,2) to reach its extreme value, it is necessary that the

16 Scientific Works of NUFT 2020. Volume 26, Issue 2
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second variation 8°/(u,x,,A) be 8°1(u,x,,.)<0 for all variations &x, and du(t)

that do not simultaneously rotate to zero.

When looking for the second variation of the functional, we will further use the
following formulas [12]:
a) if f(x,u) — scalar function, then

6f(x,u):(—aff;’u)J 8x+[—af§;’u)J du

b)if f(x,u) — a vector function, and @ — a vector of constants then
T T
A (x,u) o’ (x,u)
8 T = T \WH%J 8 + T X \MH) 8 .
(f (x,u)a) a( . X +a ™ U ;
c) if f(x,u) the scalar function of a vector argument f(x), then

5 () =5 F[MJ }Mxr [g(af(x,u)J }&H

Ox Ox ou
s 2[00 o 2 e,
ou ox ou ou
2 (6f(x,u)jT 2 [af(x,u)JT
r| Ox ox Ox ou
ox ox
= || —-——_——-—-—=-=—=— -t ——_——————
[Suj . r (SuJ
0 (o (x,u) | ﬂ(af(x,u)J
624( ox J ou\  ox

In particular, for a scalar function of a vector argument, the second variation is
determined by the following square form

8% f(x)=dx" {ﬁ[ afaix) JT }Sx .

Ox

Solution of the auxiliary optimization problem (continued).

Let us now return to the problem of finding the maximum value of the functional
(17). To solve this problem, we usc the Lagrange multiplier method, according to
which we introduce functional

Lw,xy,A)=Ju,v,w,x,)+

+T AT () (A@)x(0) + BO)u(t) + F, (Ow(t) - 5(0))dt> (34)
L

where A(f) is the vector of Lagrange multipliers, and the functional J(u,v,w,x,) is

determined by (17).
We next use the necessary first-order extremum condition for the functional (34)
(8L(u,w,x,)=0) and the results of the previous paragraph. Given that for our

Hayxoei npayi HYXT 2020. Tom 26, Ne 2 17
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optimization problem, the functions f(x,w,t), h(x,), ®(x,,x(T)), g(x,w,t) are
equal
SGe,w, )= AOx() + BOu) + F,(Ow(t) , h(x,) = Fyx,,
@050, (1)) = x" ()G x(T) =7 (x, = %,) Ry (%~ %)
g w,0)=x" (G, (O)x(O) +u" (G, Ou(®) = y*w (DR, (OwW(?) -
—7* () - COx()) RO)(¥(t) - CO)x(1)),
R(t)=(F (1)) R,(OE (1),

the solution of the problem max/L(u,w,x,) due to the necessary condition of the

extremes of the first order is from the equations
B(x,, X(1) | W (x,)
Ox,

0 0
T
oglew) w0, o
ow ow
that are converted to appearance

F(‘)T}"(to) - ZYZRO (xo - 3?0) =0,
“29°R, (Ow(t) + FT (OM1) =0.
From here, we find the relations that satisfy the vectors w(f) and x,

Mt,) =0,

X, = %y’zRglFOTX(tO) +%,, (35)
w(O) =37 R OF OM0), (36)
where the vector function A(f) is the solution of the following system of conjugate
equations
dM) o () o g w)
dt ox o
7\4(T) — a(p(xoax(]w)) )
ox(T')

This system, after the transformations, is as follows

AMO o . )
P AT (M) = 2G,(0)x(1) = 27°CT (DR (¥(1) - C()x(1)). 37)
MT)=2G,x(T),
where x(t) is the solution of the system
ax(t) _
el A@O)x(@)+B(Ou() +F,(Ow(), t,<t<T, (38)

x(to) = E)xO:
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After substituting (35) and (36) into equation (38), we obtain a two-point boun-
dary value problem

1

d [x(t)} _ AN ST EOR OF () (x(t)} .
H\MD) | 26 (1) +27°CT (OROC() A7 (1) MOJ 9
N ( B(Du(r) J
27’ CT(ORO () )
with boundary conditions
x(ty) = %V’ZFOR;FOT?»(IO) +Fx,, MT)=2Gx(T). (40)
The following formulas were used to obtain equations (35), (36) and system (37)
Op(xo, x(T) _ , > oy O9(x,x(T) _
o, =-2y"R,(x,-X,), —_ax(T) =2Gx(T),
ag(x,W,t) 2 T T ag(xawat) 2
T=2GxX—2Y (C RCx-C Ry) , T:—Zy Rw,

%fT (x,w,)A=A4"\, %fT (x,w,OA=FI\, g?hT (x M2, = FU ML) -
0
Since boundary-value problem (39) is linear, we can assume that the solution can
be represented as

x() = x(1) +%Y’2P(1)7»(1), (41)

where x(¢t) and P(¢) are the unknown vector and matrix to be determined.
Differentiating (41) and using the conjugate system (37), we obtain

%yz [P(t)—PA" —y*PG,P+ PC"RCP— AP - F,R,'F] |A+

(42)
+[~1?PG,%+PCTRCE— PC"Ry+% - A% - Bu =0
If put
P=AP+PA" ~P(C"RC—y*G,)P+F,R]FT | (43)
¥ =A% +Bu+y PG 5+PC"R(y-Cx%), (44

then (42) becomes an identity.
We now find the initial conditions for equations (43) and (44). To do this, sub-
stitute in (41) 7 =¢, and obtain an expression for the initial conditions

x(ty) = 5(t,) + %y*Pao)x(zo) |

Given (35) and the initial conditions (37), the latter relation is transformed to the
form

- 1 _ _ - 1 _
E)xo +5Y 2FoRolFoT}\'(l‘o) = x(to)"'zy 2P(l‘o)}\'(lto) >

where will we get it from
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P(t) = FRF, %(t) = %,
Thus, to determine P(f)and x(r) obtain the following equations

{P = AP +PA" - P(C"RC -v7G,)P+ F,R]'F!

(45)
P(ty)= FoRo_lFoTa
{f = A% +Bu+y PG, +PC"R(y- (%), )
() =F%,
Next, replace the variables
1 _
mH == M1)
and represent the optimal vectors x; and w(¢) in the form
X, = Ry Wt,) + %, , 47)
w(t) =R (DF, (D), (48)
where u(f) is the solution of the following system of equations
au(t _
DD (0u) - 16,0350 - C* ORO) (90) - CO=), w)

W) =G x(T).
Let us now transform system (49) to a form that depends not on state x(¢) but on
¥(?) . Taking into account that

x(1)=x(t)+ P(Hu() , (50)
we transform the initial conditions for system (49) as follows
WT) =y7G, (X(T) + P(T (),
where from
WD) =(¥E-G,P(T)) " G,R(T).
Then the system (49) itself takes the form

IO _ (47 (1)~ 72G,(00P() +CT OROCOPE) )u0) —1 G, ()F(0) -

dt
~CT(ORMO(¥(1) - C()x(1)).
As a result, we get

aw) _

o (-4" O -y G (OP@) +CT (OROCOP@) (1) -

—-77°G (%) - CT(OR@) (y(1) - C()%(1)), (5D
WT)=(VE~G,P(T)) G,2(T).

Note that system (51) will be used in further transformations.
We now use the necessary conditions of optimality of the second kind. To do this,
we find the second variation of the functional (34)
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8 L(u,w,x,) =—2v°8x] R,8x, +28x" (TG ,6x(T") +
0 0 0 S

T 52
+2f {er(t)(Gx(t) —y*CT(OREOC())5x(1) —y?6w” ()R, (t)8w(t)}dt (52)
where Ox(f) is the solution of the equation in variations
{sx(r) = A(1)Sx(t) + F, ()dw(?), )
ox(t,) = I,0x,.

Let us transform the relation (52). Add to the expression &°L(u, w,x, ) that is equal

to zero
T

—2y? {Sx a (r)8x(t)| - j d (8x ()P (£)dx(t) ) dt
to
Then we get

87 L(u,w,x,) =—2y78x; R3x, +28x" (IG 8x(T) +

+2T{8xT ® (Gx ) —yC" (z)R(z)C(r))Sx(z) -y?8w" (OR, (t)6w(t)}dt -

o
—2928xT (T)P(T)8x(T) + 2y28x" (£, )P (¢,)dx(t, ) + 27> j {(axT A () +
)
+dwT ()F (z))P’l (1)3x(t) +8x" (NP (1) (AD)dx(1) + F, (1)dw(1)) - (54)
—&xT (P (1) (AP +PA" - P(C"RC-v7G,)P+F,R'F] )P’l (t)8x(t)}dt =
=278 | 1] (BRF]) F, =R, 8%, + 28 (D[ G, ~y*P (1) ]ox(1) -
7] (3w - RPOE 0P 08x0) x|
o DR, O(8w(0) - R OF (0P (1)8x(0))

Note that the matrix equation was used in these transformations

P (¢ dP(t
LO - pEp).
d
From the last equation it follows
(R —F (FRET) )6x -0. (55)

And from (48) and (50) it turns out
w(t) =R (DF ()P (1)(x(1) - X(1)),
where from
dw(t) =R (OFF (P (H)dx(r) . (56)
Given (55) and (56), the second variation of the functional will take the form
8 L(u,w,x,) =28x"(1)| G, —y*P(T') |8x(T).

If the matrix G, —y*P™'(T') is negatively defined, that is
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G, -y’ P (I<0, (57

then 8°L(u,w,x,) <0, and hence, the quantities x, and w(f) determined by relations
(47), (48) satisfy not only the necessary but also sufficient conditions of the extrema
of the functional L(u,w,x,), that is, the pair (x,,w(f)) maximizes the functional

L(u,w,x,) , and hence the functional J(u,v,w,x,) under fixed control # and pertur-
bation Vv .
We now find the value of the functional J,(u,v) =J(u,v,w,x,) at the extremals

(xo, w(t)), that is, at optimal values of x, and w(¢)
Jo@,v) =x" (TG, x(T) - y*n" (8,)F, Ry Fy wt,) +

+j {xT OG. (Ox@) +u" OG, (Du(t) -
LY
v’ (OF, (R (OF, () —v* (y(1) - C(0)x(t ))T R(®)(y(1) - C(t)x(t ))}dt

Adding to this expression a null value

. f 4
—v{u PO, - [ (W OPORO dr}—
%

obsessed
Jo,v) =x"(1)G x(T) —y* " (6, F Ry F u(t,) +
+T{XT (NG.(x(0) +uT (OG, (Ou(e) = 7w (OF, OROF, () —} -
= (y() = C()x(1))" RO)(¥(6) = CO)x(1))
—y’ 0 (POWMT) + 771 (1) P(t)plt,) +

(=47 O 172G, ()x(0) + CT(ORO(COX(1) ~ 1)) POMO) +
WT W (OPO(~4" OO —1G()x() + CTORD(CH)x(®) - y(1))) +

o |7 () (A(t)P(t) + PO A" (1) - P(t) (CT(ORWOC(1) — v G, (1)) P(t) +

+E,(OR, (OF] (0))n(t)
And after a series of further transformations we come to the expression
Jo,v) =x" ()G . x(T) =y’ (DP(T)WT) +

+j {x (OG, (O +1u” ()G, (u(t) } 0 (58)

—* (¥(0) - COFD) Re)(¥(1) - COE())
Taking into account that

wT)=(Y’E-G,P(T)) G,&{T),

dr.

we will find x(7)

22
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(T = P(TYW(T) +£(T) = [E +P(N)(PE-G,PM)) G, Jf(T) _
=(E-y*P(D)G,)" ()

Then you can get the same
x" (G x(T) - VU (HPOHWT)=x" (T)[(E—y'szlD(T))i1 G, x

1 -1

x(E-y?P()G,) —v'G,(Y'E-P(T)G, )’1 P(DY(YE-G,P(I)) G, }?(T) =

-1 -1

=27 ()G} -y (1)) [G;‘ (G =v2Pm)) ' =y P)(G, =y °P(D)) }x

x2(T)=%"(T)(G;' - y*ZP(T))_l (7).

Substituting the last expression into the functional (58) and making substitutions
for the variables

v(t) = y(1) - C(O)x(), (59
S, =(G; —y?P()) ", (60)
finally convert the functionality to appearance
J, @, v)=x"(T)S,%(T) +
+[{= ()G, (2(0) +u" ()G, () -y OROP(@)}dt 1)
Now we havé to solve the minimax problem
min maxJ,(u,V) (62)
provided that x(¢) satisfies the system
(1) = 4,()x() + BOu () + 0,0 (1), 63)
X(t,)=F%,.
where
A, = AN+ POG, @), O,(0)=POCT (OR(). (64)

To solve this problem, we use the results of the theory of linear-quadratic dif-
ferential games.

Linear quadratic differential game problem of two people.

Consider the system

% = A()x(1) + B, (), (6) + B, (D 1),
x(t,) = x,,

with criterion
Ty 1,) =X (D)Q,x(T) + [{x" (DQ@() + 1] ()R (1Y, (6) ] (OR, (), (0}t
f

where x(f) — system status, u,(f), u,(f) — control functions.
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System-forming matrices and criterion weight matrices arec known.
You need to find controls #,(¢) and u,(f) by condition

minmaxJ(u,,u,) .
Ll L]

The following result was obtained above: the optimal control strategy is deter-
mined by the functions of the species

u, (1) = =R (B[ (DK(O)x(t) , u,(t) = R, (DB, (DK (D)x(1)

where K (¢)is the solution of the matrix differential equation

dK (¢

L0 -4 OKO - KOAD+KO(S,0) - $.0) K0 - 000,

K(T)=0;,
in which

S,(=B(OR' @B/ (1), i=12.
The minimum value of the criterion is equal
minmax J (u,,u,) = x, K (£,)x, .
uoot

Applying this result to problem (61) — (64), we get its solution in the form

u(f)=-G,' ()B" ()S(x(1), (65)
(1) =7 R ()0, (HSOxX(1) =y *C(OPNS)xX(1) , (66)
J,(u,9) =% FS(t,)F,%,, (67)
where S(¢) is the solution of the matrix differential equation of the form
L0 4 050-S04,0-G.0+

+S()(BOG, (OB (1) -y7Q,(OR ™ (0! (1)) S(), (68)
S(T) = ST>

Substituting (65), (66) into (46) and (51), we obtain
£(t) = (A1) +yP(OG, (1)) £()) -

~(BOG,' B (1) -y POC" ORMOCOP()) SO (), (69)
X(t,)=F,x,.
% = (A0 +72P()G,(0)) n(t) +CT (OROC@OPE)x
(RO -7 SOEN) -7 G (O%), (70)
WD) =(E-G,P(T)) G, 2(T)=778,%(T).

We now denote the right-hand side of the second equation of system (70) as
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n() =y S(Ox()
and find an equation that satisfies n(¢) . Using (68) and (69), we can show that

d;}it) v (dS(t) () + S0 & ax(t) ]

=—(A(r)+v'2P(t>Gx<t>) N -7 G (), (71)
n(T) =78, %(T)

Comparing equations (70) and (71), we conclude that p(f) =n(), t€[t,,7] from
where it follows
RO =y S(NE() . (72)
Now let us substitute #(¢) and p(r) from the formulas (65) and (72) into equation
(39). Then, given the relation (50), we have
2D — 40y0) + FOR OF 0w~ BOG, 0B ©SO7(0) =
= AOx() +(7*F,(OR, (OFT () - BOG, (OB" () SOF(1),  (73)

X(t0) = £(tp) + 12 P(6)S ()5 (1) = (E+77P(1,)S(10)) 2ty ).

Le’E us denote
h(t) =(E+y P(O)S())%(1)

And then, taking into account equations (45), (68), (69), it can be shown that
D 40ho)+ (1 *FOR OF 0~ BOG, OB (0)SOF0) ~
h(t,) = (E+77P(t,)S(,)) £(1,).

Comparing systems (73) and (74), we conclude that, x(¢) = h(¢), t€[t,,T], and

x(t)=(E+7 P(O)S(1)) %) (75)

We now find the optimum value for perturbation in the measurement channel.
Given the observation equation (2) and the relation (59), (66), (75), we obtain

V() = F (0 () - COx(0) = I O (v(1) + CO)E(1) - C)x()) =
= 10 COPOSOR0) +CO)(R0) - (E+77P(0)S(1)) %)) =
Thus, optimum perturbation is v(r) =0.
Given the relation (72), we also transform the optimal perturbations x, and w(f)

determined by formulas (47) and (48)
X, = RFIW(,) + %, =1 2R FTS ()i, + % = (E 4R FIS(0)F, )%, (T7)

w(t) =R (OF, (Ou(@0) =y R (OF, (DS(OZ() . (78)
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The ratios that determine the optimal solution to the H ™ -control problem use the
matrix, which is the solution of equation (68). This equation can be solved by
knowing the matrix P(#), which in turn is the solution of another matrix differential

equation (45), that is, the matrix S(#) is dependent on the matrix P(¢). In order to
break this dependence, we introduce the following matrix

2 -1 2 -1 1 ) -1
00 =SO(E+y2POSO) =(E+y7SOP®) SO =(S"O)+y°P®) . (79)
Given that P(r) — the solution of equation (45) and S(r) — satisfies equation
(68), we can show that Q(¢) satisfies the matrix differential equation of the form

dQ(f) —A"(0() - (VAN =G, (1) +

+0)(BOG, (OB () -1 °F, (R, (OF] (1)) Q(), (80)
oT)=G,,

It is also easy to show that the condition of boundedness of solutions (matrices)
P(t)and S(¢) and matrix differential equations (45) and (63)

G,—y’P'(I)<0
is equivalent to this condition
E-y?0)P(1)>0, telt,,T]. 81)
Now we express from (79) the matrix S(f) through Q(r)

S()=(E-7*00P®)" 00)=00(E-v?POQ0) " =
=00 -y?P0)

Then the solution to the problem H” -control can finally be represented as
follows

(82)

u(t) =—G,' OB QO (E-1*POOW) (), (83)
where the member ¥(¢) is the solution to the next system
d);g) A@®)x(t) + B{Ou(t) + y’zP(t)G Ox(t)+
+P()CT (RO (y(0) - C(H)x(1)), (34)
2(,)=FJx,.

And in turn, the member R(?) is, respectively
R(t)=(F' ()" R,(DF, (7).
The matrices P(f) and Q(f) satisfy the following Riccati-type matrix equations
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i’?=A(r)P(r)+P(r)AT(r)+Fw(r)R;‘ OF (1)~

- PO(CTOROCEH -G, () P(), (85)
P(,) = F,R'F]

d%lgl‘) =-A" (0@ -0 AW -G (1) +

+0()(BOG, (B" ()~ v F,(OR, (OF, (0)0(),  (86)
o) =G,,

Optimal H*” -control corresponds to the minimum value y>. of the parameter

v*, under which condition (inequality) is satisfied

E-y?Q0P1) >0, te(t,,T], (87)
where symmetric positive definite matrices P(¢) and Q(r) satisfy, respectively,
systems (85) and (86).

We emphasize that systems (85) and (86) are being resolved independently in the
forward and reverse times. However, the parameter y> cannot be selected arbitrarily.
It must satisfy the condition y* >7y-. . Otherwise, the matrices P(f)and Q(f) be-
come unbounded. Note that the values y2,  can be found numerically, for example,
by the method of half division of a segment.

Note also that this y2,  is the minimum value of criterion (3) for the most adverse

disturbances acting on the system and in the observation channel. In this case, the
worst perturbations are determined by the ratios

%= (E-v R FTO()E) " %, (88)
w(t) =7 2R (OF (O(E-y2Q0P(1)) Q0F(1), v(t)=0.  (89)

Note.
Using coordinate conversion
-1 -
x,()=(E-v P(OQ®) () (90)
optimal H” -control can be represented as
u(r)=-G,' (B (H0()x, (1), o

where x_(¢) is the output of the compensator
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@ _ A (1) + Bu(t) + 7 *F, R, FT Ox (1) +
{

+(E-12PQ) PCTR(y(t)-Cx, (). (92)
x,(0) = (E—1 " FR FyO)) Fof,

or
dv (1) _
e 2= (%0 +B.OY0), -
xc (to) = xfa
in which is indicated
A(1) = A@) - B()G, () B" (D0 +7”°F, (DR, (OF, (0 - o8
—(E-v2P0)0®) POCTORDC),
B.()=(E-y’POQ®) POCTOR®), (95)
X0 =(E—y FR,'ET0(,)) %, . (96)

In this case, the worst perturbations acting on the system are determined by the
ratio
w(t) =y R (OE, ()Q)x.(1) . o7
Let us now consider the case of solving the problem of a stationary system (1) at
an infinite time interval.
H” -optimal control of linear stationary systems at infinite adjustment time.
Consider a stationary system (1)
dx(t)
o =Ax(t) + Bu(t)+ F,w(t), t,<t<oo, 98)
x(t)) =Fx,,
in the equation of observation
(1) = Cx(t) + F (1), (99)

and quality criteria

I(u) = j (x" ()Gx() +u” (OG,u(t))dt, (100)
tO
With respect to the unknown vector of external perturbations w(¥), the vector of
measurement errors v(¢) and the vector of initial conditions x,, it is assumed that
they belong to the following set of permissible perturbations (uncertainties)

o {a: £ = 00,0, %), w(t) € Ly (t,), }
: v(t) € L, (t,,0), x, € R*®; ||E|P<1
where the norm ||&|| of a vector-valued function is defined by the following
expression

(101)
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0

HEIP= [(w" @OR,w@)+v" OR¥(©)dt +(x, - %,) R, (%, ~%,). (102)
)
Then, the H” -optimal solution to the problem of minimax control
infsupZ(u) =72, , (103)
¥oEeQy
presentable in the form
u(t)=-G,'B'Ox,(1), (104)
where x_(¢) is the output of the compensator
dx_(t)
——==Ax (t)+ B y(?),
i X, () + B.y(1) (105)

x,(t,)=x°,
in which is indicated
-1pT -2 14T ) -1 T
A,=A-BG'B'Q+y F,R'F.Q-(E-y*PQ) PC'RC, (106)

B.=(E-y*PQ) PC'R, (107)
X =(E-y*ERETQG,)) Ff,. R=(F'VRE'.  (108)

Matrices P=P" >0 and Q=0" >0 are the solutions of the following matrix
algebraic Rikatti equations
AP+PA" - P(CTRC-v7G,)P+F,R]'F] =0, (109)
-4"0-04+0Q(BG,'B" -y?F,R,'F] )0 -G, =0, (110)
in which the parameter y> must satisfy the condition
E-y?0P>0. (111)

The minimum value v, of the parameter y> under which condition (111) is

satisfied corresponds to optimal control.
The worst (most unfavorable) perturbations are thus given by formulas

w()=77R, FIOx,(0, v(1)=0, x, = (E~y RETQF,) &,  (112)
The state vector estimate x(f) can be found by the formula
() =(E-v7PQ)x,(1). (113)

Conclusions

Automatic control theory is moving towards complicating the phenomena under
study, processes and reducing information about the control system, the object, its
features, properties, characteristics, conditions of operation, uncertaintics and ex-
temal influences. Considering all of the above, the chosen area of research is
promising and has a high level of relevance.

Thus, the purpose of the article, declared at the beginning of the work, is achi-
eved, the proposed solution of the problem of finding the optimal control as an output
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feedback, which minimizes the integral-quadratic criterion of operation in the
conditions of uncertainty in the most unfavorable perturbations. The results of the
studies arc presented in the form of practical formulas, according to which the
corresponding calculations are acceptable when modeling the control processes in
the considered linear dynamic non-stationary object with uncertainties.

References

1. bamamyua JI. B., Koramu M. M. CuHre3 3akoHOB YIpaBleHHsS Ha OCHOBe JIMHEHHBIX
MaTpUYHBIX HepaBeHCTB. M.: Om3marimt, 2007. 281 c.

2. I'anrmaxep ©. P. Teopust Mmatpun. M.: @usmariaur, 2004. 560 c.

3.lomsx b. T., Xne6aukoB M. B. YmparneHue NHHeHHBHIMH CHCTEGMAMH IIPH BHENTHAX
BO3MYIICHMSIX: TeXHUKa JTNHeHHbIX MaTpH4HbIX HepaBeHeTB. M.: JIJEHAH]I, 2014. 560 c.

4. sIxy6oBid B. A. PellleHne HeKOTOPHIX MaTPHYHBIX HEPaBEeHCTB, BCTPEYAIONIHMXCS B TEOPHH
aBToMaTmdeckoro perynupoBanmst. JAH CCCP. 1962. T. 143, Ne 6. C. 1304—1307.

5. Boyd S., El Ghaow L., Feron E., Balakrishnan V. LinearMatrix Inequalities in System and
Control Theory. Philadelphia: SIAM, 1994. 193 p.

6. Chilali M., Gahinet P. #~ design with pole placement constraints: An LMI approach. I[EEE
Trans. Automat. Contr. 1996. Vol.41. P. 358—367.

7. Ghaoui L. E., Niculescu S. I. Advances in linear matrix inequality methods in control.
Advances in Design and Control. Philadelphia, PA: STAM, 2000. 372 p.

8. Masubuchi 1., Ohara A., Suda N. LMI-based controller synthesis: A unified formulation
and solution. Int. J. Robust Nonlinear Contr. 1998. Vol. 8. P. 669—686.

9. Jlo6ox O. IL, I'omuapenko b. M. MiHiMakcHe YIpaBIiHHS B MHIHHUX THHAMIYHUX CHC-
TeMax i3 po3mo AinteHnvd apamerpaMu. Haykosi npayi HYXT. 2015. Tom 21, Ne 6. C.16—26.

10. Kupraenko H. @. MunmMakcHOe yIIpaBIeHHE H OIICHUBaHUE B IHHAMIYECKHAX CHCTEMaX.
Asmomamuxa u menemexanuxa. 1982. Ne 1. C. 32—39.

11. JIob6ok A. I1. MuHIMaKCHBIE peTyIITOPEL B CUCTEMAX ¢ paclipeIeJIcHHHIMU [TapaMeTPaMH.
Becmmuux Kuescrozo yrueepcumema. Mooemipoeanue u onmumu3ayus cnoxcHeix crucmem. 1983.
Brm. 2. C. 62—67.

12. Bacwibes @. [1. Meto 1 permenns skcTpeManbHBIX 3agad. M.: Hayxka, 1981. 400 c.

30 ——— Scientific Works of NUFT 2020. Volume 26, Issue 2——



