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GENERALIZED SEPARATION OF VARIABLES AND 
EXACT SOLUTIONS OF NONLINEAR EQUATIONS 

1.1. Yuryk U D C 5 

We consider a generalized procedure of separation of variables in nonlinear hyperbolic-type 
equations and Korteweg-de-Vries-type equations. We construct a broad class of exact solutions 
of these equations that cannot be obtained by the Lie method and method of conditional symme-
tries. 

1. Introduction 

One of efficient methods for the construction of exact solutions of linear equations of mathematical physics 
is the method of separation of variables. For equations with two independent variabfes a: and t and an un-
known function u, this method is based on seeking exact solutions in the form of the product of functions of 
different arguments, i.e., 

u = a(x)b(i). (1) 

A method for the construction of exact solutions of nonlinear partial differential equations that generalizes 
the classical method of separation of variables was presented in 11 ]. Solutions are sought in the form of a finite 
sum of k terms, namely, 

u(x,t) = Y^fjinaji.x), 
i= I 

(2) 

where fi(t) and are smooth functions tobe determined. Exact solutions with generalized separation of 
variables that contain more than two terms were given in |2, 3]. 

Representation (1} can be regarded as an ansatz that reduces the equation under study to an ordinary differ-
ential equation with an unknown function a = a(x) (or an unknown function b = b(t)). In [4], the following 
generalization of ansatz (1) for nonlinear equations was proposed: 

= + f ( x ' 0 , rri > 1. (3) 

Ansatz (3) contains an unknown function f(x, t), m unknown functions a,(x), and m unknown functions 
(0,{t), which are determined from the condition that ansatz (3) reduces the equation under study to a system of 
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m ordinary differential equations with unknown functions CD;(f). The determination of this system was illus-
trated by examples of nonlinear wave equations. If m = I in (3), then this system reduces to an ordinary differ-
ential equation with an unknown function W| (?), 

In the present paper, we continue the investigations described in [4]. Parallel with (3), we consider the 
ansatz obtained from (3) by the substitution i m i , x i—> u , i H f , i.e.. 

(4) 

Solutions (3) and (4) are called solutions with separated variables, and the method used for their construction is 
called the generalized procedure of separation of variables. Note that we do not require that the function f(x, f) 
in ansatz (3) be representable in the form of the finite sum (2). 

In the present paper, we use ansatzes of the type (3), (4) for the construction of exact solutions of the non-
linear hyperbolic-type equation 

d2u d2u , ( du V 
—r- - au —r + b — 
dt2 dx2 К dx ) 

"Н с (5) 

and the Копеweg-de-Vries-type equation 

du . ( du Y $3u 
(6) 

where k is a real parameter. In Eq. (5), we can always set a = 1 using a local transformation. Equation (5) 
was investigated in [5, 6]. Equation (6) was studied in [7] by the method of conditional symmetry. We also 
consider the following generalizations of Eqs. (5) (for c = 0 ) and (6): 

d2u d2u , f du X2 , 
—T - cm—r- + b — + <D(0«, 
dt dx1 v at ) 

du ( du \k d~\i 

f + a ? 

Solutions of these equations given in the present paper cannot be obtained by methods of group analysis [8]. 

2. Separation of Variables for Eq. (5) 

For the construction of exact solutions of Bq. (5), we use the ansatz 

« = CO(t) -h /(.V,/), (7) 

which is a special case of the general ansatz (3). This ansatz is a generalization of the substitution 

u(x,t) = (p(x) + y ( f ) f 
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which is often used for finding exact solutions of nonlinear equations in mathematical physics. Substituting (7) 
into (5), we obtain the equation 

w" + ftt = a( <a + / ) / „ + b f l + c , (8) 

which must be an ordinary differential equation with an unknown function to = to (0 , This implies that the co-

efficient a f x x of 0) in Bq. (8) can be represented in the form a f x x = 2a\i.2(t)- Therefore, 

/ = + M-iO)* + £ o ( 0 , 

where |i(j{?), (A]{r), ami ju i (0 are certain functions of i. Using (7), we obtain the ansatz 

u = M O * 2 + ( 4 & 3 * + M-eW* = jio ( 0 + ci)|0. (9) 

Substituting (9) into Bq. (5), we obtain the following system of equations for the functions jx f(r): 

\i'i = (2a + 4 b)\il, 

Hi = (2a + 4fr)(i5(X2 , 

Ho = 2«p0|XT + fc(Xi + c. 

This system of equations was obtained by different methods in 15]. 
Consider the following special case of Eq. (5): 

d2u B2u , (du Y 
— = an—=• + b — . (10 
dt2 dx2 l & J 

To construct exact solutions of Bq. (10), we use the ansatz 

u = (0 (t)d(x) + f(x,t), ( 1 1 ) 

which is a special case of the general ansatz (3). Ansatz {] 1) reduces Bq. {10) to the equation 

<*"d - (Oiaf^d + 2 b f x d ' + afd") - o r ( a d d " + bd'1) + f„ - a f f ^ - b f 1 = 0. (12) 

Equation (12) must be an Ordinary differential equation with an unknown function to = to(f). Hence, 

add" + bd'2 = | i | [ i e E , (13) 

Wm + 2 bd% + ad"f = y (t)d. (14) 
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As a result, the problem of finding exact solutions of the form (11) for Bq. (10) is reduced to the integration of a 
system of two ordinary differential equations one of which is nonlinear. Equation (13) has the following particu-
lar solution: 

d = xa, a = 
a 

1 - a 
b, p = 0, a * 1. (15) 

Substituting d= xa into Bq. (14), we get 

X2f + 2(1 - a)xA + a ( a - 1 ) / = y(t)x2, (16) 

where 

1 - a . . ч 
7 ( 0 = — - — д а . 

Consider three cases. 

Case 1; a = 2. It follows from (15) that a — -2b. For a - 2, the function 

/ = y(r).v2 lnjxj + $(t)x2 + б ( / к 

is a general solution of Bq. (16). Using (11), we get 

и = Щ)х I n + + 8 ( f ) * , S(f ) = РЩ + ШШ:. (17) 

Substituting (17) into Bq. (10), we establish that 5(f) = 0 and obtain the following system of equations for the 
functions P(f) and y(f ) : 

y" = - 2py 2 » P = - 2 # f + by2 . (18) 

System (18) can be solved completely in the implicit form. If y = y(t) is a solution of the first equation of 

system (18), then the functions y(f) and — f -^ - form a fundamental system of solutions of the homogenous 
Y Y 

equation \Y = — 2i»(iy [6]. Therefore, the general solution of the second equation of system (18) can be deter-
mined (in quadratures) by using the solution of the first equation. 

System (18) has the particular solution 

% i_a n ч _л 9 , I I 
y = - ~ t p = c , f J + c2t - - — t In] f |. 

b 5b 



1856 L L YL'RVK 

As a result, we obtain the following exact solution of Eq. (10) for a = -2b: 

3 -Jb 2 , I I I 1 -2 9 -~> , i i I 2 U = —t X 1 n | .v ] + C\t + c2t ' t la t \x-, 
b V 5b J 

where c\ and c2 are arbitrary constants. 

3 
Case 2: a - 3. It follows from (15) that a = b. For a = 3, the function 

2 

/ = -y(t)x2 ln|x| + |3(f)jr + 5(f).*3 

is a general solution of Eq. (16) Using {] I), we get 

u = - y(t)x2 ln|.r| + j3{f).r2 + 5(f) .r 3 , 5 ( f ) = 8( f ) + ©(f ) . (19) 

Substituting (19) into Eq. (10), we establish that 7 ( f ) = 0 and obtain the following system of equations for the 
functions (J{r) and 5 ( f ) : 

5 " = 0, p " = b $ 2 . (20) 

System (20) has the particular solution 

5 = c\t + c2 , [3 = - 1 ~ 2 . 
b 

3 
Therefore, the exact solution of Fq. (10) for s = — b is the function 

2 

6 T J a 
U = — t ~X~ + (C\t + C2 )X~ , 

b 

where c, and c 2 are arbitrary constants. 

The ansatz u = pU).*2 4- 8(f).v1 is a special case of the more general ansatz 

u = ja3(f)x3 + + + (x0(f). (21) 

Substituting ansatz (21) into Fq. (10), we obtain the following system of equations for the functions M,(/) : 

m = o, 

|if - b\3iI -
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J-Lf = -

M-0 = - 3 6 ^ 2 + 

Note that ansatz (21) was considered in [9]. 

Case 3: a * ! , 2. 3. The inunction 

/ = 7 ( 0 
( a - 2) (a - 3) 

x 2 + + M-o(')* -l+ot 

is a general solution of Eq. (16). Using (11), we get 

= + f i 2 ( f k a + MnO)-* - ! + « (22) 

where 

Hs(0 = 
7 ( 0 

( a - 2)(a - 1 ) 
and (jt2(0 = M2(0 + t»(0 

are the unknown functions to he determined. Substituting (22) into Eq. (19), we establish that ju0(O = 0 and 
obtain the following system of equations for the functions |A](f) and |a2(f): 

№ = 

j l f = (2« + 4M|ur, 

7 O \ 
a'b 2 a~ + 6 ab 

(a + b f " + b 

(23) 

(24) 

Equation (23) has the particular solution 

3 Hi = 1 
a + 2b 

(25) 

Substituting (25) into (24) and using (15), we obtain the following linear equation for the function |i2(r): 

t2\i'i = ( 9 a - 3a " )|x2 (26) 

Equation (26) has the following solutions: 

1 
ja2 = /''2[C|Cos(o InO + c 2 sin(a In 01 if o 2 = 3a 2 - 9 a > 0, 
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\i2 = til2[cii0 + c 2 r ° ] if a 2 = j - 3a 2 + 9 a > 0, 

and 

, , , 9 ± 2 J 2 T 
j i 2 - f [gj 4 - c 2 M S if a - - — 

6 

where q and c2 are arbitrary constants. 
Thus, Eq. (10) has the following exact solutions: 

3 1 
u= —:—-t~2x2 + r,/2.tw[C|Cos(a In 0 + c2sin(a In r)] if a 2 = 3a 2 - 9 a > 0, 

a + 2b ~ 4 

m = — - — t ~ 2 x 2 + + if a 2 = - - 3a 2 4- 9 a > 0, 
a + 2b 4 

u = — 1 — - r 2 * 2 4- t[nxa[c\ + c ? l n r ] if a = — • > 0 , 
a + 2b " 6 

where c] and <?2 a r e arbitrary constants. 

Note that the ansatz u = fi|.r 4- ji2jf is a special case of the more general ansatz 

u = Mr» . * 4 + + + + M O . 

where the functions [1,(0 satisfy the system of equations 

M = + *hL 

4 
M = - b u m -

4 2 
№ = - 2 ^ 3 ~ 

4 

Jfl = -

8 7 
Ho = f A|if. 

This ansatz was considered in [9]. 
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The results obtained for Eq. (10) can be generalized to the equation 

d2u 3"« (du A2 a 

w = aud?+ I a J + 6 ( / ) M -

We have the following cases: 

Case I: a = -2b. The ansatz 

u = y(t)x2 I n j . r j 4- j3(t) j f 2 

reduces Eq. (27) to the system 

y " = -2by2 + <t>7, p " = -2b$y + + <|>p. 

3 
Case 2: a = — b . The ansatz 

2 

u = pUJ.v2 + 8(f|c3 

reduces Eq. (27) to the system 

5" = = f>ff +4>p. 

3 
Case 3: a & -b , -2b , — b . The ansatz 

where 

u = J1i(0-t + | 2 ( f ) ^ » 

a = 
a 

a + b 

reduces Eq. (27) to the system 

\X'{ = (2 a + Abm + <KR|), 

№ = ^ a2b 2a2 + 6ab ^ _ + 

(a + b f a + b 
+ • ( « ) . 



1 .1 . Y I RYK 

3. Separation of Variables for Eq. (6) 

Let us clarify for what functions Fiu) Bq. (6) admits an ansatz of the form 

x = G>i(t)d(u) + ©2(f)- (28) 

We determine the functions 0>|(f), w2ff), and d(u) from the condition that ansatz (28) reduces Eq. (6) to a 
system of two ordinary differential equations with unknown functions to] - 0>s <r > and (û2 = co2(r). Substi-
tuting (28) into Bq. (6), we get 

et)] d _ «>2_J_ 1 F(u) _ 1 d"' 1 3(d"Y 

o>] d' 0)! d' coi (d')k to? (d')4 coj (d')5 
= 0. (29) 

The functions — and — , which multiply - — a n d - in Eq. (29), are linearly independent. Assume 
d' d' CO] (Oj 

that 3 in Eq. (29). We require that the coefficients of the functions and ™ be representable in the 
G>1 W| 

form of a linear combination over the field of real numbers of the functions — and — . We get 

d " a (d"Y - d 1 . m + 3 ——-.-" = %— + u — , X, u e R, 
tf PA'* (d'Y (d'f 

or 

-d'd'" + 3 (d"f = Xd(d'f + \i(d'y (30) 

In view of (30), Eq. (29) yields 

F(u) = fto/tof-' ~ ~3]d(d'f~l + |(o2'û>f") - [itOj"3]^') it-! 

Therefore, 

co/coi 1 - A.tof J = Xt, i g f œ f 1 - jiû>î J = X2, 3 

where X, and X2 are constants. Thus, in the case k # 3, Bq. {6) admits ansatz (28) if the function Fiu) has 
the form 

F(u) = Xt d(d'f-1 + X2(d')k~\ (31) 

where d ~ d(u) is an arbitrary solution ofEq, (30). For X = 0, Eq. (30) can be completely integrated. Con-
sider the following special cases of Bq. (30): 
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(a) d = Inw if X = 0 and j l = 1; 

(b) d = um if X = ix = 0; 

(c) d = arcsin u if A - 0 and \x = - 1 ; 

(d) d = arcsinh« if X = 0 and jx = 1. 

In case (a), usi ng (31) we get 

F(u) = (X] tn u + Xi).a l-k (32) 

and Fq. (6) has the following solutions: 

u = exp 
k(kX}) - № 

t«-W +Ct-Hk + k { k X t y m x „ h i 
k - 2 Xx 

k # 2, 

1 -
S = exp| - (2X\ )"3/2r,/2 1it + c f , / 2 + (2Xxt)~mx -

X\ 
k = 2, 

where c is an arbitrary constant. The first of these functions is also a solution of Eq. (6) for k = 3 (this case is 
considered below). 

In case (b), we have 

F(u) = X\iP-k)l1 + X'zu(l k ) n , % = 2* % , X'2 =# 2 1 (33) 

In case (c), we get 

F(u) - (X} arcsinu + X2)(\ - u2)(i"kV2. (34) 

In case (d), we obtain 

F(u) = (X]arcsinhw + + u~) 2 Jl—k)!2 (35) 

Functions (32) - (35) and the corresponding solutions of Fq. (6) were obtained by the method of conditional 
symmetry in [7], 

Let k = 3 in Fq. (6). Using Fq. (29), we get 

F(u) = m{mtd(M'f + o)2 {d')2 + ~ " ^ r -
d (d'y 
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(ii) k = 3 and the function Fit, u) has the form 

d"' 3 (d")2 
F(t,u) = f(t)d{d'f + g(t)(d')2 + — - , 

rf = i/(m) an arbitrary smooth function, f(t) and g(t) are functions of t, and 
o>] = co | (/) and 0)2 = co2(t) satisfy the system of equations 

tojtof = fit), co2o>f = g(t). 

In condition (ii) of Theorem 1, we can assume that d = d(u) is an arbitrary smooth function that is a solu-
tion of Bq. (30). 

Consider the following special case of Bq. (30): d = In u if X. = 0 and j t - 1 . System (39) takes the form 

toft&P = f(t), o>'2(of"-! - t o p = g(t), 

and has the general solution 

tot = [kjf(t)dt + c ] f k , (40) 

2 = J f ^ J / 0 ) + fy ]~m dt + tg(f)[k[№ + c, dt + c 2 , (41) (O 

where c! and c2 are arbitrary constants. 
In this case, we have 

F(t, u) = [f(t)\nu + 

and the equation 

I t [ i » . + s « ] ^ [ | ] ' + f j l = 0 

has the solution 

u - exp 
1 m2(t) 

fi>t(/) toiO)^ 

where tos and (02 are defined by (40) and (41). 

By analogy, we show that if d = uU1 and k = = 0, then 

F(t,u) = * 
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/i(0 = 2 l-kf(t), g](t) = 2 ' - ^ ( r ) , 

and the solution of Eq. (38) is the function 

u - - Ë s M I 
co,(0 C0|(/|J 

In the case where d = arc sin u, À. = 0, and )t = - 1, we get 

F(i,u) = [ f(0 arcsin U + g (0 ] ( l - u2 f ~ k ) l 1 , 

and the solution of Bq. (38) is the function 

a = sin 
1 © s ® 

x - —=— 
to,(0 û>i(0 

In the case where d = arc sinh u, À - 0, and |u = I, we have 

F(t,M) = [/( f ) arc sinh m. + g(r)](1 + u2)a~k)l2, 

and the solution of Bq. (38) is the function 

i J 1 « 2 ( 0 1 u - stnh -x - - , 
L a»i(r) o>i(0 J 

where coj and coi are defined by (40) and (41). 

4. Conclusions 

The generalized procedure of separation of variables developed in the present paper can be used for the de-
termination of solutions of a broad class of nonlinear differential equations, in particular, nonlinear wave equa-
tions. Examples of these equations were considered in [4]. By using ansatz (4) and ansatzes obtained from it by 
a rearrangement of the variables u, .v, and (, one can construct solutions that cannot be obtained by methods of 
group analysis. The solutions of Bq. (5) presented in Sec. 2 have the form (2) with 2, 3, 4, and 5 terms, and, 
therefore, it is not efficient to seek them directly in the form of sum (2). 

Ansatz (3) can be applied, as a rule, to equations with polynomial nonlinearity. If the construction of a so-
lution in the form (3) is impossible, then we first seek a transformation that reduces the equation under study to 
equations with polynomial nonlinearity and then cons tract a solution of the latter in the form (3). In many cases, 
these transformations can be found if an equation admits an ansatz of the type (4). 
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