миниотеротво заготовок ссор

расесовозный научно-исследовательский учнститут комбикормовой промышленности (вниикп)

СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И УЛУЧШЕНИЕ ОРГАНИЗАЦИИ ТРУДА НА КОМБИКОРМОВЫХ ПРЕДПРИЯТИЯХ

СБОРНИК НАУЧНЫХ ТРУДОВ

N= 26

КИНЕТИКА ТЕПЛООБМЕНА ПРИ СУШКЕ И ОХЛАЖДЕНИИ ГРАНУЛ

О. И. ШАПОВАЛЕНКО, канд. техн. наук (Украинский филиал ВНИИКП)

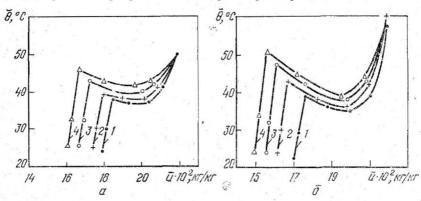
В нашей стране и за рубежом в целях улучшения физико-механических свойств рассыпных продуктов (комбикормов, отрубей, кормовых мучек и др.) широко распространен процесс прессования.

Указанные продукты гранулируют с использованием пара, воды или других пластифицирующих и связующих веществ. При гранулировании материалов с использованием воды зачастую применяют сушку гранул, так как только охлаждение продукта наружным воздухом в установках шахтного типа не позволяет получить гранулы, отвечающие по показателю влажности требованиям нормативно-технической документации.

Целью исследования являлось установление закономерностей кинетики теплообмена при сушке и охлаждении гранулированных комбикормов и отрубей, выработанных с использованием воды на прессе с вращающейся кольцевой матрицей. В исследовании кинетики теплообмена процесса сушки и охлаждения значительное место занимают изучение характера среднеобъемной температуры материала, а также определение зависимости температуры θ продукта от влагосодержания u.

Изучение процесса сушки гранулированного комбикорма и пшеничных отрубей проводили на установке, которая разработана для получения кривых сушки, скорости сушки и температурных кривых в широком диапазоне изменения температуры теплоносителя, влагосодержания и диаметра гранулированного материала. Установка позволяет моделировать процесс сушки и охлаждения гранул в аппаратах шахтного типа при изменении параметров и осуществлять измерения основных характеристик процесса. Для изучения кинетики процесса сушки по экспериментальным данным стронили кривые сушки, скорости сушки и температурные кривые гранулированных материалов. Закономерности кинетики теплообмена конвективной сушки и охлаждения изучали по локальным температурным кривым гранул.

В процессе исследований температура продукта после пресса колебалась в широких пределах (от 49 до 62°С) в зависимости от влагосодержания и диаметра гранул. В начале процесса слой гранул прогрет равномерно. После пресса температура гранул комбикорма влажностью на сухую массу $\overline{W_0}^c = 21,9\%$, выработанного на матрице с отверстиями диаметром 4,7 мм, составила 60° С, а диаметром 9,7 мм — 50° С. При продувании продукта теплоносителем температурой 120° С в течение первых 2 мин наблюдалось понижение локальных температур. Причем наибольшее снижение температуры отмечено в верхней части слоя. Максимальный темп падения температуры для гранул диаметром 4,7 мм составил 26° С/мин (высота от днища кассеты h=0,25 м), а для гранул диаметром 9,7 мм— $10-11^{\circ}$ С/мин (h=0,25 м). Для средней части слоя (h=0,15 м)


этот показатель соответственно составлял 14—15 и 6—7°С/мин. В нижней же части слоя (h=0.05 м) максимальное уменьшение температуры гранул находилось в пределах 5—6 и 2—3°С/мин (d=4.7 и 9.7 мм соответственно).

После достижения точки минимума наблюдалось повышение локальных температур слоя, которое начиналось по истечении 2 мин с момента сушки. С увеличением диаметра гранул рост температуры при прочих равных условиях замедлялся. Так, температура нижней части слоя гранул диаметром 4,7 мм ($\overline{W}_0^c = 21,9\%$) возрастала к концу процесса ($\tau = 10$ мин) от 49 до 90°С (или на 6,4°С/мин), а гранул диаметром 9,7 мм — от 47 до 68°С (2,5°С/мин). Темп роста температуры в верхней части слоя составил 2 (d = 4,7 мм) и 0,33°С/мин (d = 9,7 мм). Снижение начального влагосодержания материала до 19,8% (на сухую массу) приводило к увеличению темпа роста локальной температуры нижнего слоя до 7,2 (d = 4,7 мм) и 5°С/мин (d = 9,7 мм), верхнего слоя — только до 1,7 (d = 4,7 мм) и 0,5°С/мин (d = 9,7 мм).

Установлено, что при сушке продукта в течение 10 мин теплоносителем температурой 120°С нижний слой гранул диаметром 4,7 мм прогревался до температуры 90—93°С. При этом максимальная среднеобъемная температура гранул составляла 65°С. Сушка в течение 6 мин при указанных режимах и диаметре гранул приводила к повышению локальной температуры нижнего слоя лишь до 70—72°С.

В процессе исследований охлаждение гранул осуществляли по истечении 6 мин сушки. При этом максимальный темп снижения температуры материала наблюдался в нижнем слое. Для гранул диаметром 4,7 мм он составлял 26° С/мин, а для гранул диаметром 9,7 мм — 19° С/мин. В верхнем слое максимальный темп снижения локальной температуры составлял 11-12 (d=4,7 мм) и $12-13^{\circ}$ С/мин (d=9,7 мм), т. е. находился на одинаковом уровне.

На рис. 1 и 2 приведены температурные кривые гранулированных материалов при различных параметрах процесса.

Puc. 1. Температурные кривые для гранулирования комбикорма при различной температуре воздуха:

a-d=9.7 MM; 6-d=4.7 MM; $t_0=15^{\circ}\text{C}$; $1-t_c=65^{\circ}\text{C}$; $2-t_c=80^{\circ}\text{C}$; $3-t_c=100$ C;

Как следует из графиков, среднеобъемные температурные кривые имеют явно не монотонный характер. В начальной стадии процесса в результате действия отрицательного внутреннего источника тепла снижается температура гранул. Через некоторое время температура материала начинает повышаться. Это приводит к тому, что в слое создаются резко выраженные температурные поля. Поэтому анализ механизма процесса проводили по зонам.

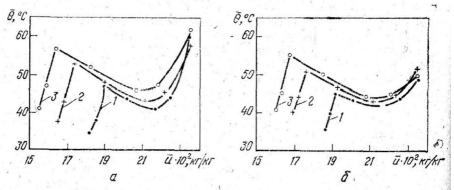


Рис. 2. Температурные кривые для отрубей при различной температуре воздуха: $a-d=7.7\,$ мм; $t_0=32^{\circ}$ С; $6-d=9.7\,$ мм; $t_0=27^{\circ}$ С; $1-t_C=60^{\circ}$ С; $2-t_C=80^{\circ}$; $3-t_C=100^{\circ}$ С

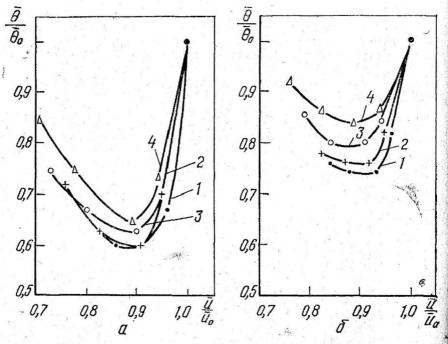


Рис. 3. Изменение относительного влагосодержания гранулированного комбикорма в процессе сушки: $a-d=4.7\,$ мм; $6-d=9.7\,$ мм; 1-t $=65^{\circ}$ C; 2-t $=80^{\circ}$ C; 3-t $=100^{\circ}$ C; 4-t $=120^{\circ}$ C; \overline{W}^{c} =21.9%

Анализ температурных кривых позволил разделить процесс на три зоны. Первые две зоны относятся к продуванию гранул теплоносителем температурой 60—120°С, а третья зона — к процессу охлаждения. Характерной точкой, разделяющей первые две зоны, является точка перегиба. На рис. З приведены кривые изменения относительного влагосодержания материалов в зависимости от относительной температуры гранул.

Установлено, что при увеличении температуры теплоносителя точка перегиба сдвигается к оси ординат. При этом значение относительного влагосодержания в точке перегиба в исследуемом диапазоне не зависит от режима сушки и диаметра гранул и находится в пределах 0.9 ± 0.05 кг/кг.

Для удобства описания температурных кривых весь интервал удаляемого влагосодержания от начального u_0 до конечного u_{κ} разбили на три интервала: от u_0 до первого граничного u_{r1} , от u_{r1} до второго граничного u_{r2} и от u_{r2} до u_{κ} . Влагосодержание u_{r2} соответствовало точке перехода от зоны нагрева к зоне охлаждения гранул.

Экспериментальные данные по среднеобъемной температуре гранул обрабатывали по методу наименьших квадратов. В результате получены следующие уравнения, которые адекватно описывают кинетику процесса нагрева и охлаждения гранул комбикорма и отрубей по зонам:

$$\begin{split} \overline{\theta} &= \overline{\theta}_0 A \, (\overline{u_0} - \overline{u})^n \text{ при } \overline{u}_{\rm r1} \leqslant \overline{u} \leqslant \overline{u}_0; \\ \overline{\theta} &= \overline{\theta}_{\rm r1} A \, (\overline{u}_{\rm r1} - \overline{u})^n \text{ при } \overline{u}_{\rm r2} \leqslant \overline{u} \leqslant \overline{u}_{\rm r1}; \\ \overline{\theta} &= \overline{\theta}_{\rm r2} A \, (\overline{u}_{\rm r2} - \overline{u})^n \text{ при } \overline{u_k} \leqslant \overline{u} \leqslant \overline{u}_{\rm r2}, \end{split}$$

где $\overline{\theta_0}$ — начальная температура гранул, соответствующая $\overline{u_0}$; $\overline{\theta_{r1}}$ — температура в точке перехода от первой зоны ко второй, соответствующая $\overline{u_{r2}}$;

 $\bar{\theta}_{r2}$ — температура в точке перехода от зоны нагрева гранул к зоне охлаждения, соответствующая \bar{u}_{r2} ;

u — среднеобъемное текущее влагосодержание материала.

Значение показателя степени n зависит от формы связи влаги с материалом, а коэффициента A — от параметров процесса и диаметра гранул. Значения указанных величин приведены в табл. 1.

Средние квадратичные отклонения, полученные при расчете температуры гранулированных комбикормов и отрубей по уравнениям (2) — (4), приведены в табл. 2.

Как было сказано, максимальная локальная температура слоя гранул ($d=4.7\,$ мм), непосредственно прилегающего к днищу кассеты ($h=0.05\,$ м), при сушке продукта в течение 10 мин теплоно-

сителем температурой 120° С не превышает 93° С, а максимальная среднеобъемная температура составляет 65° С. При гранулировании комбикормов с применением пара среднеобъемная температура гранул после пресса может достигать $90 \pm 5^{\circ}$ С [2]. В связи с этим можно предположить, что гранулирование комбикормов с использованием воды и последующая их сушка в исследуемом диапазоне в меньшей степени, чем при гранулировании с паром, влияет на биологически активные вещества комбикорма за счет более низкой среднеобъемной температуры гранул.

Таблица 1 Значения коэффициентов уравнений (2)—(4)

Значения коэффициентов уравнений (2)—(4)										
Диаметр		$\overline{u}_{r1} < \overline{u} < \overline{u}_0$			$\overline{u}_{r_2} < \overline{u} < \overline{u}_{r_1}$			$\overline{u}_{\rm K} < \overline{u} < \overline{u}_{\rm 2r}$		
гранул, мм		A	n		· A	n	A		n ·	
			Гранули	ров	анные	комбикорм	a			
4,7 7,7 9,7		1,29 1,42 1,57	0,155 0,155 0,155	1	2,18 1,99 1,95	0,155 0,155 0,155	1,36 1,54 1,57		0,155 0,155 0,155	
		Г	ранулирова	анн	не пше	еничные от	руби			
7,7 9,7		1,42 1,68	0,155	1	2,11 2,08	0,155 0,155	1,71 1,82		0,155 0,155	

Таблица 2 Значения средних квадратичных отклонений

7	Среднее квадратичное отклонение, ±°C								
Диаметр гранул, мм	$\overline{u}_{\mathbf{r}_1} < \overline{u} < \overline{u}_0$	$\overline{u}_{\Gamma 2} < \overline{u} < \overline{u}_{\Gamma 1}$	$\overline{u}_{\rm K} < \overline{u} < \overline{u}_{\rm F2}$						
2 . 6	Гранулирован	ные комбикорма	1						
4,7 7,7 9,7	2 3,5 1,2	2,7 2,2 1,4	1 1 2						
Γ	ранулированные	е пшеничные отр	уби						
7,7 9,7	2,1 1,3	1,2	2 1						

Таким образом, установлены закономерности кинетики теплообмена при сушке и охлаждении гранулированных комбикормов и отрубей, выработанных с использованием воды на прессе с вращающейся кольцевой матрицей.

ЛИТЕРАТУРА

1. Баум А. Е. Сушка зерна.—М.: ЦИНТИ Госкомитета СССР, 1963.—268 с. 2. О сохранности витаминов и аминокислот при гранулировании комбикормов / Н. Полунина, И. Никитина, О. Казащева и др.— Мукомольно-элеваторная промышленность, 1969, № 9, с. 29.