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We consider equations of hydrodynamics with certadditional constraints. Group-theoretical methcal®
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Introduction

The past century in mathematical physics was mavii a large number of research papers on
particular solutions to nonlinear differential eqjoas. Besides the fact that exact solutions areost
always interesting themselves, they also have @b practical application to verification of vaurs
numerical methods of solving of nonlinear diffeiehéquations.

There are many examples of explicitly solved protdeof fluid mechanics in the literature. All known
solutions and multiparametric families of new partar solutions appear to be obtainable by means of
group-theoretical methods [1-8]. Moreover, thes¢hows are useful for finding particular solutioris o
nonlinear differential equations that satisfy cerfarescribed initial or boundary conditions.

In the present paper we look for invariant soluiaf a system of Euler equations that satisfy the
Rankine—Hugoniot conditions.

1. Formulation of the problem
To describe the motion of nonviscous compressifled we use the system of equations

D,u“(t,x) + o0, p(t,x) =0, D,o(t,x) + o0, u* (t,x) =0, (1)
where tOR', xOR" (n=1,...,3), u* { x) stands for thek-th component of the medium's velocity
(k=1,...n), p is the pressureg is the liquid density, and, =4 +u“0, is the total derivative with
respect to time with], =z2-. Repeating indices mean summation, unless othemdted.

The main thermodynamical characteristics of theioragh, p andT are expected to be related
by an expression

p=(p,T), (2)
where ®@ is a smooth (piecewise smooth) function. We alssume that the process described by
system (1-2) is either isothermdl=Const) or homothermal(T=0, k=1,...n). ThereforeT does not
depend on spatial coordinates, and state equa)aedds as

p=F(p.T), (3)
with another functior.

In order to represent system (1) in a convenienttfe following analysis form we introduce the
notations
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wherek=1,...n, u=0,...n, andxy=t. Using these notations we represent system (theiform
us +utu’ +p7'p, =0, Po+u'p, +pul =0, (4)
Substituting (3) into the first equation (4) we @bt
us +u'ul +p'F,p, =0, (5)
Po+ulp, +pul =0, (6)
whereF, =%
For the symmetry analysis of system (5—-6) we ueertfinitesimal Sophus Lie method. Its brief
description is following. Let
F" (xuuy)=0, v=1,..N, (7
be a system of first order differential equatioméiere x=(x,...X,), u=(u*,...u™), and uay=Du. We
consider a one-parameter local gr@pf transformations
X =f(xua): f|_ =x, u=g(xua) g, =u (8)
in the spaceR™" of the variables Xu). Transformations (8) induce a one-parameter grofip
transformations in the space of the variabigs

Uy =W(XUUg;a): W =Uy, (9)
where W(x,u,u,,;a) is a function which can be determined once we khandg. As a result we have

a one-parameter grou@u) of transformations in the spacB™™™ of the variables xu,uq)).
Transformations (9) are referred to as phelongationof transformations (8), and the groGg, is the
first prolongationof G [1, Chapter 2.3].

Definition 1. System of equations (7) is said to ingariant with respect to group G of point
transformationg8) if the manifold determined by equations (7}he spaceR™ ™" is invariant with
respect to the first prolongati@y) of groupG.

Let
X =& (xu) 2 +p7 (xu) -, (10)
ax,. ou
where
fi(xlu):w_ , (11)
7 (o) = 900D (12

The operatorX is said to be thenfinitesimal operatorof the one-parameter group® of
transformations, and functior and n” are itscoordinates The first prolongation of the group’
corresponds to an infinitesimal operator of therfor
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x(l)=X+Ziaﬁ' (13)
where
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One of the prominent results in the group theorycaftinuous transformations is the fact that the
invariance criterion for a differential equationthvirespect to groufs* is stated in terms of the
correspondent infinitesimal symmetry operator|[2f.

Proposition 1.System of equatiolfg) is invariant with respect to group'@ and only if

XoF' (xuuy) =0, v=1,.N, (15)

Condition (15) is equivalent to a system of firsler linear differential equations xpu anduz
named thesystem of determining equations

Thus the problem of finding the maximal local groop point transformations that are
admissible for system (7) is to determine the coatés of the infinitesimal operators that genetigte
one-parameter subgroups.

In the case of system (5—6) the infinitesimal syrnmneperator is expected to be of the form

Z= £ (%, 0) =+ (61, )~ + A (0, 0) (16)

X ou 0p

Y
whereu=1,...n, k=1,...n.

Acting by operator (16) on equations (5—6) we abtarather cumbersome system of first-order
linear differential equations. Eliminating the \ahlesug andpo by virtue of their expressions from (5)

and (6), we transform it to another system of eiquatwhere the quantities, U, u'j‘ andp; will be

treated as independent variables from this poistth® coordinates of the infinitesimal operatomadb

depend onujk andp;, the two equations obtained from (5) and (6) byanseof criterion (15) can be

split with respect to these variables. As a resalhave the system of differential equations

g +é& =0, g +& =0, K#!,
n'+ulg -& - &u =0, N, + PN+ E =& -n'u* =0,
i=1
/\O+Z(u'/\I +pul)=0, 17)
i=1
OF (&0~ &)+ F, A+ F, & =0, (18)

where &% = &°(x, ), & =&“(x), n“ =n*(x,u), A =A(xU,p). In all the formulae (17-18) there is no

summation over repeating indices.
Note that the arbitrary functioR appears only in (18). This equation is refereedasoa
classifying condition

2. Symmetry of system (5-6)
It is easy to check by direct calculations thatesys(17) has the solution



E=6¢+Mx+a, /\=(c—g$°(xo)jp,
& =(%5°(xo)+5jxk +/Jk><o+iaf>q v

7 =g+ Y al +[5—§$°(xo)juk, (19)

where £°(x,) = d&°(x,) /dx,, af =-a,, ¢, a, d, 6, 4, #“andV* are arbitrary parameters. Substituting this

solution into (18) we have
(5800 -c)p, -, = (0 -20p (20)

where ¢(p,t) =F , fo 1 ). Note that the parametess , #“andV* (ande in the case whepg=0) are not

involved in system (20). Therefore, for arbitrampé€tion F (p,t) system (17-18) admits the solution
& =0, E=dlax +ux tve,  pf=Y aul+,  ai=-a). (21)
j=1 =1

— . . 0 — — . .
In the case wheifr = ¢(p the same solution wit§~ = a = const is also possible.

The functions®, & andy* (k=1,...n) defined by (21) correspond to the differentiakors
0 0 0 0 0 ¢ 0 _u 0

P=—, G =X—*+—r, Jg =X —— +Uu : 22
Kox, =% ox, ou” @ = ox. % ox,  ou"  auX (22)
It is easy to check that the vector spéE’@Gk,Jk,>, k=1,...n, r=1,...n, is closed under the Lie
bracket
XY - [X,Y]=XY-YX (23)

and therefore the space of these operators possemsatructure of a Lie algebra. This is a general
property [2], namely, the set of infinitesimal opinrs that generate the one-parameter groups of
transformations admissible for a differential edquat(or a system) necessarily form a Lie algebra.

Operators (22) withR, =22 (the casea =¢&°# P form the Lie algebra of the Galilean group.

Therefore the following statement holds.

Theorem 1. For arbitrary function F =¢(p,t) system of equations—6) admits 03

parameter group of transformations with the Lieeddgp generated by the operatd2). In the case
when F; does not depend op &xplicitly systen(5—6) admits the Galilean group (@).

Thereby, we have found the symmetry of system (&@er arbitrary functional relationship
p =F(p,t). However, for some values Bf symmetry of this system appears to be essentiatigr.
In order to list all the cases of symmetry extensjoit is necessary to get the set of solutions to
equation (20) under various constraints on therpaters involved in this equation.

As a result of solving equation (20) we have fodr&dcases of symmetry extension for the
system in question. The corresponding functipn@nd the set of infinitesimal symmetry operators
admitted by system (5-6) are presented in Table 1.



Observe that for all state equations that admiextension of the symmetry (except the first
one, where g =@, =Mp®'") an arbitrary one-parameter invariance group ofeEwquations is

generated by an operator of the form

Z=(a+/]x0)i+Axki+Bukik+Lpi. (24)
0%, 0X, ou 0p
The operator (24) with the constraint=0 is referred to as theenerator of scale
transformations The solutions of system (5—6) that are invanith respect to this operator are called
self-similar, orautomodel solutions

Theorem 2.The symmetry extension of sys{@&6) is possible in 12 cases presented in Table
1. The maximal invariance group for this systenthis "2 + 4 -parameter projective group This
group is admissible for systef®-6)if and only if F, = cp?'".

Remark 1. Observe that the one-dimensional case is specahdly, the two first equations in
system(17) appear only whem>1. As it is demonstrated if®], for the state equation of the form
p="% p° which describes an ideal polytropic gas, sys(g#6) under n=L admits an infinite group.

Due to this fact the general solution was obtaif@dsysten(5—6)in this casg9].

Table 1. List of inequivalent cases for the stapeadions and the corresponding operators

¢=F, Z, Notes

Z, =aP+ AL +d, +n(0-4)L, + 6L,

4, =Mp*'" Lo =X o + %X+ 0%~ U ) 3 + ()" %035 R =3k
L= %de i T3 e L= Xt U L=

¢, = Mp’ Z,=aR,+ A, +d, +3(5-4)L,, 6%0

$5 = Mg 0° Z, =M+, +[5(6-4) - 44]L 6#0

720" O 7 A e G-, o=1-2

y=p X

@ = Mx; Z, = AL+ AL, + (u—-35A)L,

% =%'G(p) | Zs=1

. =®(0*"x) | Z, = AL +4L, +ng AL, g=1-2%

8, = (0*"e™) | Z,=aP, +n5al,

g, =e™0(p) | Z,=aP,+4al,

bo=XD(P) | Zo= AL+

#y, = O(p) Z,=aR + AL +3L,]

b =P D(%) | Zi=O(L+5L,)

3. Invariant solutions of system (5-6) and Rankind4ugoniot conditions
In this section we find solutions of system (5-6)the case=1 that are compatible with the
Rankine—Hugoniot conditions.



In this case each operator that generates a oaeapter group of admissible transformations
for system (5-6) can be presented as
0
ap

wheret=xp, X=X1; @, J, 0, 4, x andv are arbitrary constant parametes,yo—1/2, A=B+4, andL is a

Z :(a+/1t+6tz)%+(,ut+v+Ax+6Xt)ai+(6k+,u+ Bu—&u)ai+(L—6t)p (25)
X u

function of these parameters.

Following the well known technique [1,2] we findetlsolutions of (5-6) that are invariant with
respect to a one-parameter group of transformatiotisinfinitesimalsymmetry operator of the form
(25) by means of transition to invariant variabMsch can be expressed via solutions of equation

ZJ(t,x,u,n)=0. (26)

In order to list the cases, when invariant solwgiane applicable to description of point explosio@
medium with the state equati@¥F(p,t) it is necessary to analyze the invariance of rtianifold,
determined by boundary conditions with respectaagformations generated by operator (25).

The role of “boundary conditions" in the casepoint explosion is played by the Rankine—
Hugoniot conditions [10]

p2(u,~D)+p,D =0, p2(u,~D)* + p, = pD* + p, (27)
which represent the discontinuity of main charastes at a material medium of the shock wave. In
formula (27) the quantities with the index 2 ddserthe values of these functions behind the shock
wave front, and those with the index 1 before lte Thedium is expected to be motionlaegs0, D is
the velocity of the shock wave front apg p; are constantg;>0.

It is obvious that in the one-dimensional casentiidion of the shock wave front

in the point explosion problem can be determined lvglationxq,,=g(t) with a certain
function g. Therefore, the manifoldM defined by the boundary conditions (27) is
determined by the system

x-g() =0, (28)
plu-g(t)]+p9(t) =0, (29)
plu-g(t)1* + p(o.t) - p,g*() - p, =0, (30)

wherep,, p; are constants that are equal to initial valuethefdensity and the pressure
in the medium, correspondingly®” is unknown function, and(t) = dg(t)/dt .

Note that infinitesimal operator of the form (25)tlw coefficients involving
quadratic terms as admissible if and onlypif® o°. In this case system (5-6) has a
general solution, therefore we can &0 in (25).

Applying the infinitesimal invariance criterion (L& the manifoldV we obtain
the system

U—-Lg=0, (31)

v+t + Ag(t) — (a + At g(t) =0, (32)



p—/;gZ(t)(L+28)+prp+(a+At) b - 20, (1 + BY)g =0, (33)

To satisfy the condition (31) in the case wher0 it is necessary that
g(t) = St+ R, whereS andR are some constants#0. Formula (32) implies thdt=—B.

Analyzing the functionsp=F, and the corresponding operatds (see Table 1) we
conclude that the cagez 0 is possible only for a state equation of the form

p=Cc-—, M :(301)21 (34)

which corresponds to the functiprMp” with 6=—2.
SincelL=0 for the other cases conditions (31-33) can peesented as

u=L=0, (35)

v+Ag-(a+At)g=0, (36)
2

28% 4% -20,0°B+ (@ +A)p, =0, (37)

It is necessary to analyze condition (37) now. Nibi&t the operators listed in
Table 1 can be partitioned into two groups accagrdm the criterion whethel is a
multiple of B. Thereby, the first group consistsAf Z,, Z4, Z,, andZ;,. For the operator
Z,4 the restrictions (35) imply that the correspondingction ¢, does not depend dn
and, therefore, it coincides with; For the operatoZ,, the restriction_.=0 makes the
operator vanish.

By virtue of (35) the functiong,, ¢, andgi, correspond to the same infinitesimal
symmetry operator

Z, :(a+/1t)%+(v+/1x)%. (38)

Therefore we can consider these three cases togditfemote the function that
corresponds to operator (38) by, (0)=¢,(0)=¢,(0)=¢,(p). It is clear that
p, =@, (P)H() with a certain functionH(t). For operator (38) equation (37) is
equivalent to the condition

(a+At)(p,), =0, (39)
which leads tdH=c=const.

Draw our attention to other cases.LHO then the functiong; and ¢g coincide
with @15, and the functiongs, ¢s, s andep,o can be represented as

¢, =t7(p) (40)



due to the fact that the infinitesimal symmetry r@per for all these cases is the same,
namely

0 0 0
ZIII =/1ta+(|/+/1)()&+ Bua—u, (41)

whereA=4(c+2), B=42,0#0.
Formula (37) enables one to recopgt,
p, =t7®(p)+H(t). (42)
Observe that the derivative pfi with respect ta can be expressed as

o, _.OH
(plll)t_T(plll H)+ at (43)

So, the condition (37) is equivalent to the equmtio

op,-oH +t < =0 (44)

HenceH (t) =ct’ +c, and

py =t’®(p)+c, c=p. (45)
The last case to be considereétjsgo. Then

,« 0 d d
py =€¥®(p)+H(t), Zy =a[a+/<x&+/<ua—uj, (46)

and henc&=«a. Expressingp,, ), in terms ofp, H and < using formulae (29) and (30)
we find that

Py =€ ®(0)+ py. (47)

Hereby, all the functional relationshigs=-F(p,t) for which the corresponding
invariance solutions are compatible with the Raekiugoniot conditions are listed. In
what follows we determine the functiaift) for each of these cases and verify that
g=const, i.e. that a shock wave really propagatesnredium. Solving equation (36) we
obtain

(e, +1t, if A1=0,
g”(t)'{cz(awu)—%, if A%0 (48)

in the cas&@=2;, p=®(p) + p,;

(49)

Lint+c,, if 6=2+1=0,
gy (t) = / 0 o >
ct' -4, if %0

for the cas&=2;,, p=t’®(p) + p,; and

g ()= Ge" -~ (50)



for Z=2Z, p=e™d(p)+ p,. In expressions (48-508), c; andc, are arbitrary constants.

Therefore, if we restrict the consideration to #yenmetry operators that do not contain any
guadratic terms in their coefficients, the follogitheorem holds.
Theorem 3. The four classes of invariant solutions to syst&m6) compatible with the
Rankine—Hugoniot conditions underhare:
a) solutions that are invariant with respect todhe-parameter subgroup generated by the operator
Z =(a +)lt)2+ (v -BSt+ Ax)i + Bui+ L,oi :
ot 0x Ju 0p

2
whereL=-B, a, 4, v, A, BandSare constantsdB#0 andS# Q,if p=c— E2)) ;
Yo,

b) solutions invariant with respect to the one-peater subgroup generated by the operator
0 0
Z, =(@+At)—+ [V +Ax)—,
i = ) o ( ) F

if p=®(p)+p;
c) solutions invariant with respect to the one-pagter subgroup generated by the operator

Z, =/1ti+(|/ + Ax)i+ Bui,
ot ox ou

where A=A(5+1), B=42,if p=t’®(p);
d) solutions invariant with respect to the one-pater subgroup generated by the operator
Z, :a%+(v +Kax)%+/(aua%,
if p=e™®d(p)+p,.
Hereby, the cases when the boundary-value prolBgnid), (27) admits invariant solutions are
exhaustively described. Some special cases arédeoeg in [11].

Conclusion

In this paper group analysis of a system of Eulgragions with a state equation of the medium
is carried out, and the cases when the point ekplgsroblem has invariant solutions are listed. The
group classification provided for the state equais of great practical importance, because tisene
unified analytical expression that satisfactorigsdribes the relationship of thermodynamic pararsete
of liquid throughout the domain where these paransetary. In many cases the state equations listed
in Table 1 coincide with functional relationshipsokvn as state equations for liquid in limited ramge
of values of thermodynamic parameters.
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InBapianTHi po3Bsi3ku cucremMu piBHAHb Elsiepa, mo 3a10B0JbHAIOTE YMOBaM Penkina-I'toronio

M po3riasiiaeMo piBHAHHS TiPOJWHAMIKY 3 IIEBHUMH JT0JJATKOBUMHU OOMEKeHHIMHU. TeopeTHko-
TPYIOBI METOAM 3aCTOCOBYIOTHCS JJIS MOIITYKY 1HBApiaHTHUX pillIeHb CUCTEMH piBHSHB Eitniepa, mo
3aJJ0BOJIbHAIOTH yMOBaM PeHkina-I'torowio.

Kniouosi cnosa. TeopeTUKO-TPYIIOBI METOH, IHBApiaHTHI pileHHs, piBHsAHHA Eiinepa.
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PaccmoTtpuBatoTcs ypaBHEHUS THAPOIMHAMUKY C HEKOTOPBIMU JIOMOTHUTEIbHBIMU OTPaHUYCHUSIMH.
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