КРАХМАЛО-ПАТОЧНАЯ ПРОМЫШЛЕННОСТЬ

удк 541.8. ОПРЕДЕЛЕНИЕ РАСТВОРИМОСТИ ФРУКТОЗАТА КАЛЬЦИЯ

4-

6-

)B

 Γ O

OT

ИΧ

ax

ИΝ

И-

ТИ

p-

(O -

'H-

)a-

ке,

ax

)Д-

КИ

10-

КИ

МИ

ak-

DH-

ИH-

ТKИ

ep.

₹КИ

ЛЯ-

ле-

ae-

ан-

CT-

ЛЬ,

ИМ.

ЛЬ

ва-

пи-

31-1

KO M

кий

lac-

Н. А. АРХИПОВИЧ, Т. Я. ЧЕРНЯКОВА, С.И.УСАТЮК КТИПП

При низких температурах фруктоза образует с гидроксидом кальция малорастворимый мелкодисперсный осадок фруктозата кальция [1] в весовом соотношении 3,11:1 [2].

При выделении фруктозы из растворов, содержащих ее в смеси с другими сахарами, используется свойство фруктозы образовывать осадок [3] с гидроксидом кальция. Это свойство положено в основу технологии получения из сахарозы фруктозы и глюкозы. От того, насколько полно произойдет разделение, зависит чистота получаемых продуктов.

При выделении сахаратным методом фруктозы из смеси было обнаружено, что наряду с осаждением фруктозы про-исходит осаждение глюкозы.

Значительное влияние на степень разделения глюкозы и фруктозы оказывает температура проведения процесса. Образование осадка фруктозата кальция происходит при температуре 1—0°С [4]. Повышение температуры осаждения приводит к переходу фруктозы из осадка в раствор, что объясняется увеличением растворимости фруктозата кальция, а это, в свою очередь, приводит к повышенному содержанию фруктозы в растворе глюкозы. Следовательно, при увеличении температуры осаждения снижается выход фрук-

Ухудшение чистоты растворов глюкозы приводит к нарушению режима кристаллизации, что влечет за собой снижение выхода кристаллической глюкозы и фруктозы.

В литературе в настоящее время отсутствуют данные о методике определения величины растворимости фруктозата кальция, а также ее значение.

Чтобы определить условия проведения осаждения, необходимо получить наиболее важные его физико-химические характеристики, одна из которых — растворимость.

Фруктозат кальция получали на экспериментальной установке, состоящей из термостатированной ячейки 6, плотно закрытой сверху резиновой пробкой 8, термостата 4 для термостатирования ячейки, компрессора 5 для подачи хладагента в термостат (рис. 1).

Термостатированная ячейка снабжена термометром 2 для измерения температуры фруктозного раствора и мешалкой 3

для перемешивания раствора. Число оборотов мешалки регулировали лабораторным автотрансформатором I, скорость ее вращения 80-100 об/мин.

Фруктозный раствор с известной концентрацией (5%-ный) заливали в термостатированную охлажденную ячейку и охлаждали до температуры опыта (—1; 0; 1; 2; 5; 10°С). По достижении этой температуры к раствору при перемешивании добавляли расчетное количество гидроксида кальция, эквивалентное количеству фруктозы в растворе. Гидроксид кальция дозировали 60 мин через воронку 7 в верхней части ячейки и осаждали 60 мин. Температура раствора в ячейке поддерживалась постоянной в течение всего времени осаждения.

Далее полученный осадок отделяли на термостатированной центрифуге при температуре опыта в течение 10-12 мин и скорости вращения ротора 2500-2700 об/мин.

Осадок фруктозата кальция растворяли уксусной кислотой в соотношении 1:1 до объема 100 мл, рН раствора доводили до 3,5—4,5, так как это значение рН соответствует минимальному разложению фруктозы [5].

Из фильтрата, полученного центрифугированием, отбирали 50 мл, нейтрализовали до рН 3,5—4,5 и доводили до объема 100 мл.

Полученные растворы фильтровали. Поляриметрическим методом в фильтратах определяли содержание фруктозы [6] и трилонометрическим — содержание солей кальция [7].

Зависимость растворимости фруктозата кальция от температуры приведена в таблице. Данные таблицы свидетельствуют о том, что значение растворимости фруктозата кальция возрастает при увеличении

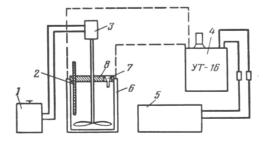


Рис. 1. Схема экспериментальной установки: I — лабораторный автотрансформатор; 2 — термометр; 3 — мешалка; 4 — ультратермостат; 5 — компрессор; 6 — термостатированная ячейка; 7 — воронка; 8 — резиновая вотермостатированная ячейка; 6 — резиновая вотермостатированная вотермостатированная вотермостатированная вотермостатированная вотермостатированная вотермостатированная в резинованная в рез

Содерж	Содержание фруктозы, г/100 мл	Содержание с	Содержание солей кальция, % СаО	Расчетное кол кальция,	Расчетное количество солей кальция, % СаО	Соотношение фруктовы в осадке и	Содержание ф	одержание фруктозы, г/моль	Содержа кальция	Содержание солей кальция, г/моль
в осадке	в растворе	в осадке	в растворе	в осадке	в растворе	растворе	в осадке	в растворе	в осадке	в растворе
474	886 0	1 380	0.0877	1 399	0.0896	15.535	0.0249	0,00160	0,0248	0,00158
478	0,200	1,003	0.0960	1.387	0.0915	15,163	0,0248	0,00163	0,0256	0,00171
230	0.390	1 480	0.1995	1 441	9660 0	14.475	0.0258	0,00178	0,0264	0,0219
630	0,353	1,100	0.1998	1,440	0.1098	13,122	0,0257	0,00196	0,0261	0,0219
500	0,000	1 439	0.1317	1 406	0.1301	10,813	0,0251	0,00232	0,0256	0,0235
1,252	0,605	1,358	0,1610	1,323	0,1882	7,028	0,0236	0,00336	0,0243	0,0288

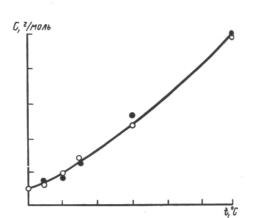


Рис. 2. Зависимость растворимости фруктозата кальция от температуры:

О — опытные данные; ● — вычисленные по управлению (I)

температуры осаждения. Так, при изменении температуры на 10 °C величина растворимости возрастает почти вдвое (51,49 %). Таким образом, осаждение фруктозы в виде фруктозата кальция необходимо проводить при низких температурах.

Однако понижение температуры осаждения до —1 °C иногда приводит к примерзанию раствора на стенках осаждающей ячейки. При этом наблюдалось отсутствие воспроизводимости результатов опытов, поэтому понижение температуры ниже 0 °С нецелесообразно.

Следовательно, процесс разделения глюкозы и фруктозы необходимо проводит

при температуре 0 °C.

Из таблицы видно, что при повышении температуры осаждения уменьшается отношение фруктозы в осадке к содержанию ее в растворе. Соотношение же фруктозы и гидроксида кальция в осадке и в растворе эквивалентно, что подтверждается данными других исследований [1, 2].

Полученные результаты, представленные в таблице, отражены на кривой рис. 2.

В результате обработки экспериментальных данных методом наименьших квадратов получено уравнение, характеризующее зависимость концентрации фруктозы в растворе от температуры $C = (1.65 + 0.08t + +0.025t^2 - 0.00155t^3) \cdot 10^{-3}$,

где C — концентрация фруктозы в растворе, г/моль;

t — температура проведения процесса, °C.

Значения растворимости, вычисленные по уравнению и полученные экспериментальным путем, представлены на кривой

Проведенные исследования показывают, что растворимость фруктозата кальция зависит от температуры осаждения и возрастает с ее повышением согласно уравнению. Чтобы достичь высокой степени осаждения ф ходимо Полу фруктоз ваны пр свойств цесса о

 \mathbf{C} n

редакциє 1961.— (2. X нии сах 1964, №

3A F

УДК 664.1(CAXAI РУМЫ

В по ных зав 5,6 млн лебался тиве нам мы прои ми котор Воздель дах, в операти вается в

В по ли внед ной све мынский

Длительн Содержан массе све Выход са Количест Потери с Содержан Расход, услог извес шения фруктозы, процесс осаждения необюдимо проводить при 0°C.

Полученные значения растворимости фруктозата кальция могут быть использованы при изучении его физико-химических свойств и для дальнейшего изучения процесса осаждения с целью его оптимизации.

Список использованной литературы

1. Принципы технологии сахара / Под редакцией П. Хонига — М.: Пищепромиздат, 1961.— 616 с.

2. Харин С. Е., Палаш И. П. О строевин сахаратов.— Сахарная промышленность, 1964, № 12, с. 11—15. 3. Ромінський І. Р. Фруктоза та інулін, А. Н. УССР, Киев, 1959.—— 103 с. 4. Чернякова Т. Я. Разработка спосо-

4. Чернякова Т. Я. Разработка способа получения фруктозы и медицинской глюкозы из сахарозы.— Автореф. канд. дис., Киев, 1982.— 24 с.

5. Ермолаева Г. А., Сапронова Л. А. Условия образования 5-оксиметилфурфурола в сахарных сиропах.— Сахарная промышленность, 1982, № 3, с. 31—32.

6. Чернякова Т. Я., Архипович Н. А., Танащук Л. И. Определение глюкозы и фруктозы в смеси.— В сб: Крахмало-паточная промышленность. М., ЦНИИТЭИпищепром, 1982, № 2. с. 4—6.

7. Архипович Н. А. Химико-технологический контроль свеклосахарного производства. — Киев: Техніка, 1964. — 355 с.

ЗА РУБЕЖОМ

) -

3

1

7ДК 664.1(498) САХАРНАЯ ПРОМЫШЛЕННОСТЬ РУМЫНИИ

В последние годы на румынских сахарных заводах в среднем перерабатывалось 5,6 млн. т сахарной свеклы, сбор ее колебался от 18 до 25 т с 1 га. В перспективе намечено значительно увеличить объемы производства сахарной свеклы, посевами которой в 1984 г. было занято 280 тыс. га. Возделывается свекла почти во всех уездах, в основном в производственных коперативах, и примерно одна треть выращивается на орошаемых землях.

В последнее время в республике начали внедрять одноростковые семена сахарной свеклы. Наиболее перспективный румынский высокоурожайный сорт «Моно-

рам», который предпочтителен для северных районов.

Суммарная мощность сахарных заводов в настоящее время составляет 72 тыс. т переработки свеклы в сутки, средняя мощность 1 завода — 3 тыс. т.

Основные технико-экономические показатели в среднем по сахарной промышленности СРР за прошедшие 5 производственных сезонов приведены в таблице.

Длительность производственного сезона до недавнего времени составляла 120—125 сут. За последние годы проведена реконструкция сахарной промышленности, построены сахарные заводы мощностью 4000 т переработки свеклы в сутки. Однако, по мнению румынских экономистов, строительство заводов такой мощности приводило к трудностям в доставке сырья и его потерям из-за больших расстояний от свекловичных плантаций до сахарных заводов. В связи с этим запланировано построить 19 сахарных заводов мощностью 1000—2000 т переработки свеклы в сутки.

Проводится реконструкция действующих предприятий. Намечено довести длитель-

Показатель	Производственный сезон				
показатель	1980/81 г.	1981/82 r.	1982/83 г.	1983/84 г.	1984/85 г.
Длительность сокодобывания, сут Содержание сахара в свекле при переработке, % к	111	100	104	75	97
массе свеклы	14,9	14,8	14,1	14,9	14,8
Выход сахара, % к массе свеклы Количество сахара с 1 га посевов свеклы, т	9,14 2,13	11,28 2,16	9,02 $2,23$	10,30 1,88	11,26
Потери сахара в производстве, % к массе свеклы		1,07	1,06	1,18	1,08
Содержание сахара в мелассе, % к массе свеклы Расход, % к массе свеклы	2,32	2,19	2,54	2,60	2,48
условного топлива	7,3	7,2	7,0	6,4	6,3
известнякового камня	6,6	6,7	6,7	6,2	6,2