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Introduction.

1°.We denote by C - the space of continuous functions f : [-1,1] — R endowed by
uniform norm

N A ro._ . f(r) ' 7. O _ o=
I £ 1= max [f()l; € =[r:fDec) reN; €= Ci1i=[-1,1],

3

Y we denote by A(Y)— the set of functions f € C such that f is nondecreasing on
[i+1,¥:] when i— even; f is nonincreasing, when i— odd (that is A(Y)— the set of
piecewise-monotone functions). Functions f € A(Y') are called comonotone each other.

For the case s = 1, that is for the set of monotone functions the direct estimates of
approximation by monotone polynomials are investigated in the works of G.G.Lorentz,
K.L.Zeller, R.A.De Vore, A.S5.Shvedov, R.K.Beatson, X.M.Yu, D.Leviatan, L A.Shevchuk
almost so full as in unconstrained approximation. Therefore everywhere below s >
l,s € N. Let us denote by P, — the spase of algebraic polynomials of degree < n, n €
N, P(Y):=P,NnAY),

Let s € N,Y =Y, is a collection of s+ 1 distinct points y; € I. For the fix collection

Ei(f):=, daf

| f= P

— the value of the best uniform approximation of a function f € A(Y') by the polynomials
Pe P,(Y).

D.J.Newman, E.Passow and L.Raymon proved an estimate (see, for example [5])
E;(f) S B)’wl(f”;‘n—l)a n e j\T, (11)

where w(f;t)— the modulus of continuity of f € C, and the constant By depends only
of Y. G.L.lliev [6] established that the constant By in (1.1) may be changed by the
constant By, depending only of s. A.S.Shvedov [7], (see also K.M.Yu [8]) stregthened the
estimate (1.1), replasing the first modulus of continuity w,(f;?) by the second modulus
of continuity w,(f;¢); namely the estimate

E;(f) < Byws(fin™h), meN, (1.2)



was proved.
Besides, it turned out, that the constant By in (1.2) can’t be replaced by the constant
B, (see [7]). Estimate (1.2) yields

EL(f) < %wl(f’;n‘l), neN, (1.3)

where f € C' N A(Y). Similary to (1.1) constant By in (1.3) can be replaced by the
constant By, see R.K.Beatson and D.Leviatan [9]. For the smoothness more than two
the following estimates of E.Passow, L.Raymon and J.A.Roulier [3] are known:

if feCUt)(INA(Y), then

- LS .
EL(f) < B;2 g n>2s—-1+7),

. L FO | .
E(f) < Byw' = n> 4(s+1+ 7).

Recall that the k—th modulus of continuity of a function f = f(z) continuous on
[a,b] is the function

wi(t; fifa,0))= sup  sup |ox(fi2)|, t€[0,(b—a)/k]
he[0,t) x€la,b—kh]

where .
an(fie) = Z(—l)’“‘i ( ,; ) f(z +1h)

is the k— th order finite difference of f at @ with step h.

Put
1 4 VI—22
n

— , €I, neN.
n2

p = pa(2) =

In this paper the theorem 1 is proved, which provides a coapproximation estimate
the same as unconstrained estimate established by S.M.Nikol’skii [13], A.F.Timan [14],
V.K.Dzyadyk [15], G.Freud[16], Yu.A.Brudnyi [17] .

Theorem 1. Letk € N. If f € C*NA(Y) then for every integer n > Ny there exists an
algebraic polynomial P, € P,(Y) such that

|f(2) = Pa(2)| < By wpi()wi(f; pa(2); 1)

for all x € I, where the integer Ny depends Enly of Y, the constant, B, ), depends only of
s and k.

The following theorem 2 is a corollary from theorem 1.
Theorem 2. Let k€ N. If f € C* N A(Y) then for every integer n > k + 1 there exists
an algebraic polynomial P, € P,(Y) such that

|f(2) = Pa(2)] < Bywpa(a)wp(f"; pa(z); 1)

for oll x € I, where the costant By, depends only of Y and k.



Theorem 1 and a well-known Dzjadyk’s inverse theorem (see, for example [10], p. 263,
see also A.T.Timan [11], X6.2.3) provide the theorem 3 — constructive characteristic of
Lip*a N A(Y) classes for a > 2.

Theorem 3. Let a > 2. The function f € Lip"a N A(Y) iff there exists a sequence of
polynomials P, € P,(Y) such that

“ﬁ =0(1l), n— oo.
pe \

Let us also formulate the theorems 1 and 2 corollary for the class W*, r € N, of
functions which have the (7 —1)-th absolutely continuous derivative on I and |f")(z)] < 1
a.e. on [.

Theorem 4. If f € W™ N A(Y), r > 2, then for every integer n > r — 1 there exists a
polynomial P, € P,(Y) such that

/=2 <.

pT

Remark. Theorem 3 is true also for 0 < a < 2 [12] and a = 2, theorem 4 is true for
r = 1, 2. Respective papers are to be pablished.

For the methodic purpose we shall prove theorem 1’ equivalent to the theorem 1.

Everywhere below k is integer, k£ > 1; w — (k — 1)-majorant, that is w = w(t), t >0,
is a continuos and nondecreasing function with w(0) = 0 and ¢~*~Dw(¢) nonincreasing.
We write w € &1 iff w is (k — 1)— majorant.

Set

W HE :={f:f€C*® and wy_i(t;f":1)<w(t), where w e 1},

WYH? = {f:f€C and wy(t;f;1)< o(t), where ¢ € ®*}.

It is well known an embedding
W Hy , Cc WHHY,

if p(t) = tw(t).

Denote by A;, B;, ¢;, R; different positive numbers (constants) which may depend only
of k and s.

Put

s—1

MI:=1(z):=1(2;Y) := H(z - ).

i=1
Theorem 1'. If f € W?Hy_, and f'(z)ll(z) > 0, € I, then there czists ¢ number

N = N(Y,k,s) and a constant ¢, such that for every n > N there exists an algebraic
polynomial P, = P,(z) of degree < n for which the inequalities

Py(2)1l(z) > 0 (1.4)



and
|f(2) = Pa(2)| < erp’w(p). (1.5)

are valid.
Auxiliary assertions.

2°. Everywhere below o € I, 3 := arccosz, y € I, a := arccosy, n € N, n # 1, r :=
24ks + 3k + s + 2. We denote by

Bta

1 2r41
9 (z —y)*" / J, (t)dt

( )!8,Lzr+l

D21'+1,n,,7'(y7 7’) =

— the Dzjadyk-type polynomial kernel (see [1], X15), where

oty = o [ ] (a2,
Yo L sin(t/2) ’ sin(t/2)

is the Jackson-type kernel.

Let the function ¢ = g(z) be continuons on I. By Li(z,g) we denote the Lagrange
polynomial of degree < k which interpolates g at the points —1 + 2i/k, i = 0, k.
Lemma 1 ([1,p.135)). If g € W2Hy_|, then the polynomial

1
D](’]F))(x;g):: n 7' J / Lk y J))D21+lnv(ya )dy'*'Lk(l J) (21)
-1

of degree < (r+1)(n—1) and its derivatives D\V(z;g), DP(a;g) for allé > 0 andx € 1
satisfy the inequalities

lg'P(2) = DP(2;9) < p*7° (lek—l (p [ [z = 6,2+ 6]N1T)

p r—2k—2
+ R, (5> w(p)), p=0VvV1v2, (2.2)

in particular »
9% (2) = D)z g)] < Rap*Pw(p). (23)

For a fix n and every j = 1,n put
Bi = jm/n, B;:=(j—1/2)x/n,

0 ._ {(.7 - 1/4)7(-/77‘: lf .7 < 77‘/27
GEG -3/, i Gz,

e oe— 7n 0. 0
xj 1= cos B, T; 1= cos f;, x; 1= cos 3},


file:///r-2k-2

-2
N O ) . . s w2 gin 2 .
tin(2) = (a, - lj) cos®2narccosz + (2 — T;)” " sin” 2narccosz

— an algebraic polynomial of degree dn —2. Set 2_s =2 _; =20 =1, 2y = Tpyo = —1.

The following inequalities hold (see [1],p.142,120).
P<h]' < 5p, lEIJ,
hj:tl < 3h],

min { (a: - .7;?)_2 , (9« - Tj)_g} < tin(2)

gmax{(x—x?)ﬂ, (.’L‘—T}.)‘E}, z € I;
tin < 10°h7% 2 € I

p* < 4hj(lz — ;] + hy), © € I

h: < 64p(le —x;| +p), v €1;.

2(|lz — 2] + hy) > |2 — 51+ p > (|2 — 25 + ;) /8,

least three different segments I;, and everywhere below n > Ny.

We set .
0, = { Lit1, L5~ 1)7 if Tj = Y,
' (Zj41, Ti_2), if Yi € (25,%5-1),

s—1
=Jo
i=1

Let us write j e Wif N0 =0, j =1,n.
The following simple estimates we shall need

I(x) (11 ~y ) o

< +1 , zel, yel\O,
‘nm ) yer
M(z) <|:L ;) >S“ .
g (2l , zel, w.
'H(w») 3 R +1 rel, g€

Denote b, := 6ks, by := 1 — 2k — 14 [SHE=L] = b, V by;

1
dyn = d; n(b;Y) :/ y)dy;
-1

rel. (2.1

)
-8)
9)
0)

Let us take Ny € N such, that every segment [y;41, %], ¢t = 0,s— 1, containes at
g Yit1, Y

(2.11)

(2.12)



@m=@Amyw=/w—%qu—wﬁﬁwmwm%

Tyn(s) i= TyalaibiY) i= = w3>/} 23) (@11 = ) B )Ty dys

T]n(’L) = T (2;6;Y) := ( Tin(2;0;Y) — Tj,n(n:;b;Y)) sign d; ,(b;Y);
Define
x;(2):=0, ifa <z;, x(z):=1, if 2 > ay;
h; )2” I(z)
lo — @il +h; /) [T(2;)]

I':=T(z;7;b):= (
Lemma 2. If j € W, then

sign d; ,, = sign d; ,, = sign I(a;);
Bt~ [1(z,)] < |dsl < Bahi= [1(x;)
Bsh; =" [I(z;)] < 1d;jnl < Bah}=? (z;)|;

T; (:L')H(w)s1gn di,>0, z€l;

(2)(z) >0, 2 €1\

]n
ﬂﬁwﬂSBWZR vel;

1
T;.(2)| < Bip-T, z €15

J

75,0)| 2 [11,@)| > BT, eI\
J

hj 2b—s
(2) = Tin(@)| <Bs (— ) ser
x;(z) in(2)] < b<|$_$j!+hj> T €

_ / . '.’b—s
T n(2)] < By <——L—> el

|z — ;| + h;

2.13)

(

(2.14)
(2.15)
(2.16)
(2.17)

(2.18)
(2.19)

(2.20)
(2.21)

(2.22)

Proof. For convenience assume j < n/2, that is in particular 29 —z; > (Z; — 2;) /2 >

h;/4. Since by (2.5) 2;_1 — Z; > h; /4, so &; =27 < 3h; /8.
Let us represent d; ,,,d;, as a sums

T; T 1
din=dinitdinotdri= [+ [+ [ &0y
-1 Ty CE;__l

Ty T

-1 Ty z

1
din = dynos ot diai= [+ [ 4+ [ (=2 (@0 - ) ER @M@y,



Applying the estimates

|2 — x| + hy <8mh1{|m—:v?|,|:v—a‘vj[}, x €1\ I

(2 — ;) (z —2;_1) < (4/3) min {(l - x?)g

,(:1:——@)2}, v eI\
(2.6) and (2.12) we obtain

- _ . i s—1-2b 98420 _
|djn—1| < 8 T(;)|h;~ / (:L - SL?) dz < 55 8|H(:1:j)|h]1. 2b
= BlOIH(SL‘j)Ih}—Zb (223)
Similary

|(Zj,n’1| 5 |dj,n,:{:1| < BwH(ll,‘j)|h}_2b. (224)
By the aid of (2.7), (2.12), (2.23) and (2.24) easy calculations yield right estimates in
(2.14) and (2.15). To estimate |d; ,| and |d; ,| from below we notice, that

L

ol > [ 22, (2) (@) d,

o
T
2

Ty

]:Zj,n,oj > /tfbn(:z,)|l'[(:1,)|d:1,

Since

(z —z)(®joy — ) > gmax{(r - a:?)z, (z - i'j)z} , TE [a:?, f]-] ,
M(2)] > 2"~ [TI(;)],

S0

z':j+10
2

il Vool > M@)I3-27 [ (@ —3;) " do

0
7

. 1 B 1-2b ~
= [H(x;)|3- 2-821) — (17]- _ a:?) (231 - 1)

8 2b-1 e . 1 B _
> <§) (2% -1)3.2 T lh,;. 2 |H(a;)| =: 2Bsh;™* |I(=;)] .

Obviously,(2.13), (2.14), (2.6) and (2.7).

B3 > 2By, (2.25)



which implies the validity of the left estimates in (2.14) and (2.15).
Besides (2.13), (2.16), (2.17) are follow from (2.25) .
The estimates (2.18). (2.19) and (2.20) are the corollaries from inequalities (2.13),
(2.14), (2.6) and (2.7). :
The estimate (2.21) follows from (2.18), (2.12) and representations

T;n(2) — x;(2) ~/ ia(y)dy,  when 2 < aj;

T; . ( )_/ T{,.(y)dy, when 2> z;.

.The same estimate is valid for the polynomial T]n(a), which together with (2.21) give
(2.22). Lemma 2 is proved.

Everywhere below ¢ € &%,
Corollary from Lemma 2. [fj € W then

2b—s—k+1

hyiplhy) [0 < Buglp) (]——”H—p) T el (2.26)
hyio(h) [T ()] 2 Brasolp) (l—_—”m;f L eel\ (2.27)

2b—s k

)
@(hj) > (2.28)

@) = Ty < Buoslo) (=
J

2b—s—k

w(h;) fjn |<B14SO( )<ﬁ—l_+—p> | , v el (2.29)
T —

Indeed. since h} < 64p (Jz — ;| + p) s0 p(h;) < w(84/p(lz — ;] + p)) < 8 p 5 (e —

z;| + p)%, @(p), similarly ¢(p) = 28h; ® (]1 — ;] + h;)3p(h;), therefore (2.26)— (2.29)
follow from (2.11), (2.12) and respectively (2.19), (2.20), (2.21) and (2.22).

3°. Starting from the collection {z;} and {y;} we construct the collection Z of points
{zp} . To the collection Z we include all points y;, i = 0, s and every point z; with j € W.
Renumber points of the colection Z in descending order. Put 2o = 1. If 2, = z;,57 € W,
then let the number j(p) = j. If z, € Y, then we set j(p) = max{j:j € W and z; > z,}.
The collection Z contains n — s§* points, s < e + 1 < 25.$Putb, := 6ks.

Lemma 3. Let a function g € A(Y) and |¢'(2)] < @(p), 2 € I. Then the polynomial

Gn(:U = n('L J q + Z Zq 1)_ Zq)) i), n(I bla))

of degree < 4byn is comonotone with g(z) on I, that is G’ (2)II(z) > 0 and

l9(2) — Gul(a;9)] < capp(p),z € 1.



Proof. Let 2 € (2,,2,-1], then

9(x) = Galz39) = 9(2) — 9(zp-1) + D, (9(24-1) = 9(29)) (Xi(0)(@) = Tjgyn(@;013Y))
g=1
(when 2, € Y the point z,_; in the last formula must be replaced by z, ).
For every ¢ = 1,n — s~ the following estimates

Zg-1 — 23 < 13hy(y,
1
5/)71(‘9) < hjggy < 45pa(6), 8 € [24,2-1] (3'1)'

are valid. Indeed, [z,, z,_,] U Li(g)he-

Taking in to account (2.4) and (2.5) we find
pn(8) < max lefihi(g); higyx1s byyz2 < hjg),  Riq) < 45pa(0).
Since z € (zp, 2p—1], the condition of lemma , (3.1) and (2.8) yield
9(zp-1) = 9(2)] < l9(zp-1) = 9(2)| < (3p-1 = ) 9 (9Pj())
< 13- 9%hyy0 (hi) < cap(p),
19(24-1) = 9(z)] < 13- 9%y (hicy)) -

This and (2.28) provide

*

n—s

2 h
l9(2) = Gul39)] < capp(p) + cap®o(p) S SR
¢=1 (ll - $j(q)l +p)

n

. h;
! i - kel - . 7 <
< eapp(p) + cpp ‘f(f’); (le = z;] +p)° ~

< copp(p).

It follows from the choise of the numbers j(¢) and from the construction of T} ,(z; b1; Y)
(see (2.13)) that G,, € A(Y'). Lemma 3 is proved.
4°. For every ¢ = 1,5 — I we denote by j; the number, for which y; € I;, (if there are two
such numbers then we choose the greater of them). Put

*

y; =y, iz -y Sy Y=, in the opposit case;

Yii= (Y \{s})u{y};
Tin(2) = Tj_an (23003 Y5) 5

K*(z) } .

K™ (z):= min |2 - yl; K,(2) = min {1;
Ts-1 p

i=1,s—1



Lemma 4. If a function g € W2HY_ | and ¢'(y;) = 0 for every i = 1,s —1, then the
polynomial

SYACHE
Qn(;g):= Dp(z;g) - ) =T ()
iz:; Ti/,n(yi)

of degree < 5byn for any 6 > 0 and x € I satisfies the inequalities

lg(2) = Q23 9)| < cop’w(p), (4.1)

lg'(z) — Q(z;9)] < p(ngk_l (g"ip;[e— 6,2+ 6]N1T)

+¢o (g)rﬁ%_zw(p)) K,(z), (4.2)

in particular
lg'(2) = Qo (3 9)| < espw(p)n(z), a €. (4.3)

Proof. Let us make use of approximate properties of the polynomial D,(z,g), given
in the Lemma 1 and show that for the polynomial @,(z,¢) the inequality (4.2) holds.
Obviously, it is sufficient to prove (4.2) for 6 > 10p. Let us fix i = 1, s — 1. Inequalities
(2.19) and (2.20) yield

T (a . e ey
i) = |7 < Bls( T ) (2 )‘
Tinly) [0 = 5ol + hy-a)  |TH{(yii )
h,- 2by—s+1
< Big Ji=2 ) K.
< Dis <'l 2 o] 4 By, Cn(2)
bo— s—1
P T

<B ( > K,(z), ve€I\O,. 44
= 17 'Q; — :Uj'—Zl _.I_ hj,_j A ( ) \ ( )

Let p < § < 24 (| — 2j,—s| + hj,_2). Then for € I'\ O;, taking into account (2.3) and
(2.4) one can write the inequality

bo— 5=
’ P 2
|])rz(yzvg)|az(7') = Hl/)n(yz)w (/)n(yz)) 17 <l-’L — -77]',_2' h]‘,_2> lxn(l)

pao izl _k
, P Tk
- K, (z
< cropw(p) <’1 — zj,-2| + hj.—?> o

stk—1
2

bam

< eppw(p) <§) Ko (z). (4.5)

If6 > 24 (|z — 2j,—2| + hj,—2) > 2(| — y:| + hj,_2), then we shall make use from (2.2)
and (4.4), noting that [y, — 2,y; + 3] C [z — 6,2 + 6] :

| D}, (55 9)] ai(2) < polyi) <R1wk_1 (paly:); " [x = 6,2+ 61N 1)

10



"y (%) ) Jw(pn(y,:))) ()

s4+k—1
by 2A5=2

SClzp(wk—l(.P§g”§[l’_5’x+6]ml)(|’6—:L'- [r)l-f-h- 2)
- Ji—2 Ji—

r—=2k—2

—1

o 4. % bﬁ_sg
o <|-1 vil +/7) ( p ) " ko)
p \|z — @, _a| + hj, 2

r—2k-2
<p (Clzwk—l(ﬂ§g//§ [ —é,2+68]NT)+ci3 (%) w(p)

p b2+l+k—r;sil
X | — K,(z), zel\O,, 4.6
(II = ¥l +p) ) ) \ (4.6)

in this case. Taking into account that by = r—2k—1+ [s—'*'—;“—l] we find that for z € I'\ O;
the inequality (4.2) follows from (2.2), (4.5) and (4.6).
Let now z € O;. We need to estimate an expression

D/ is v
¢(2) = Diwsg)+ 228D g (02 p(a)
ﬂ,ll(yi)

For this purpose we involve Dzjadyk’s inequality for the algebraic polinomial derivative
modulus ( see [10], p.257 or [1],X22) and using the estimate

h_ 2by—s+1
(0 < B 12 ) bel
| (8)] < Bie (IQ_ i, o] + hj,—2 €

obtain

1 h] R 2b:—s5+1
al(8)] < Bis ( =2 ) 0¢cl.
I ( )l — lbpn(e) Io— .T;j’__zl + /Ij1_2

Similarly to (4.5) and (4.6) we find

r—2k-2
1D (i3 9)ei(0)] < e (wk_l(g”;p; [e—-b,z+48]N1)+ <£> w(p))
=:c148), =0 € O;.
It follows from (2.2) that
97(6) = D65 9)| < 1592, 0 €O
Recalling the equality ¢'(y;) = 0 we find

/. B'(u)du

LR

1B(2)] = <o = wil(ers + €15)Q < e16pQK(2). (4.7)

11



Now for 2 € O the inequality (4.2) follows from (4.5)—(4.7).
The inequality (4.1) follows from (2.3), (2.20), (2.29) and inequalities

i=1 Tz‘/,n(yi) ’

« ( p >b2"%hj _Q‘H(.’E]'_Q,Y)l

l$—17j1_2|+p H(yu}/z

< Z—: c17Pn (Y )w(/)n(yi))

cisp’w(p).

Lemma 4 is proved. _
Lemma 5. For an arbitrary set E, consisting of the segments I;, j € W, the polynomial

nIE Z (ID ]117'b1;Y)

jI;CE

of degree < 5bin satisfies the following inequelities

|Un(z; E)| < Biopp(p), €I - (4.8)
Ul(e; E)I(2) > 0, zel\E; (4.9)
|Un(2; E)| < Baop(p), € E; (4.10)
4b 1+ k+s—1
03w B 2 Booto) (g5 Ka(z), w€I\E.  (411)

Proof. Let us prove (4.11). For every @ € I\ E, among all numbers j : I; C E we choose
the number j* such that |z — ;.| = q}ling | — ;| (if there are two such numbers, we
J:4;C

take the largest of them). Applying (2.27) and (2.17) we write

4by+k
. p (z)
U, (z; E)| > Bisp(p) <—————) , zel\F. (4.12)
Fix : = I, s — 1 and notice that for z € O, the inequality
T Y - 4 .
> ok, (2)———o, e W, 4.13
T e P A (4.13)

holds. Now we collect together (4.12), (2.11) and (4.13), apply the estimate
|.1:—:uj—|+/)<6(dlst(a;,E)+/)), tel\FE

and find (4.11).
The estimate (4.10) follows from (2.26) and the choice of b; (b; = 6ks), namely

2by—s—k+1 -3

h; P E
U (25 E)| < caopip(p - ( )
Onles DS cantle) 2 (e, To7 \e w45

12



h.
ca0p(p) Y ; < 2ea00(p), 2 €1 (4.14)

jd;CE (|2L' - zjl +P)2

IA

Similarly to (4.14) the estimate (4.8) follows from (2.29). The estimate (4.9) follows from
(2.27). Lemma 5 is proved.
5°. Lemma 6. Let a function g € Hf, an integer j = 1,n — 20k and the set

20k

Jj = lJ Iiso
y=0

are given. If among the segments I, there exvist 2k — 1 segments Liy,,,0< 1 <1y <
oo < vgpoy < 20k, such that for each p = 0,2k — 1 a point &4, can be found for which

,g (‘i]'-f-l/,,), < @ (pn (ij-f-u,,)) )

then for any x € J; we have
lg(2)] < carp(p).

Lemma 6 can be proved using the Whitney’s inequality [18], [19].
The following inequality will be quoted.

mest S Caap, T € J] (51)
Put
2cs(Can + 1)Hrthts=1 gabithts-le
M = max 8122 1
] ma\{ B : o
and

A= max{?cs -+ MBQQ, 1} .

Everywhere below (1) := tw(t).
Definition 1. We shall write j € Vi, if

[f'(2)] £ Aearp(p)
3
for each z € I;; jeEVLifjgVi,0n U Ly, =0 and
v==-3

|//(2)] 2 Ap(p)

for each z € Ij; jEe Vs, if 7€ ViUV, Put
E1 = U Ij, E2 = U Ij7 Eg = U Ij.
JjeW: JEV2 JEVs

The set F3 (if it is not empty ) consists of nonintersecting segment [a,,b,] C I.
Lemma 7. Every from nonintersecting segments [a,, b,], constituting the set Es, consists
of no more then 20k segments. Other words, if 7 € Vi, then among the numbers j,j +
1,...,7 + 20k there are at least one number j° such that j° € Vs.
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Lemma 7 follows from lemma 6.

Henceforth we shall assume that E, # @, else theorem 1’ wold follow from the lemmas
7 and 3.

Let 7 € V3. We denote by [a,,(j),b,,(j)] — that of nonintersecting segments [a,,b,],
constituting the set E3, which contains the segment I;.
Definition 1. We shall write j € V31, if j € V3 and Ey N [a,(j), buy] # 0. Denote

VB,Q =Vs \ V3,17 V=V U Vi, Vs:= V3,2 U Va;

Esy:= \J I;, Esp:= |J Ij; Ei:=Es UE), E;:=Es;;UE,.

JEV3, JEVs2
We shall write j € Vs, if j € Vy and I; N Es # (. Put
J€Vs
We shall write j € V7 ,if 7 € V4 \ Vs and I; N Eg # 0. Put
E.=J L.
JEV:
Finally, we shall write j € Vs, if j € Va \ (Ve U V) and I; N E; # 0. Put

Es=J I

JEVs

For every j = 1, n we define the function

Si(x) == /(y — ;)" (x;_ — y)idy / (y— ;) (220 — y)ldy | . (5.2)

The derivative f’(x) we represent as a sum of a litlefunction g1 = g1(z) and a Iarge-
function g, = gs(2) as follows.

Definition 2. We put g,(z) = 0forz € EsU Eg; g1 = f'(2),for 2 € Eq\ (Eg U Ex).
For x € I; with j € V; we put g;(¢):= 0, when (j+ 1) € Ve and (j — 1) € Vg5 ¢1(2) :=
(1= 5;(2)) f/(z), when (j+1) &€ Vs;  g1(z) = S;(2)f'(x), when (j — 1) & V.

Set ga(2) = f'(x) - g1(2),

filz) = f(—1>+/gl<y)dy, folz) = /gz(y)ch,
21 21

( thatis f(2) = fi(z) + fo(2).)

Lemma 8. The following inequalities are valid

lg1(2)] < Arp(p),  x €1 (5.3)
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wp(g2: ;1) < Asp(t), t>0. (5.4)

The first inequality of Lemma 8 can be proved using Whitney’s inequality [18], [19] and
Lemma 6. The second can be shown as in [20].

Proof of the theorem 1’.

6°. We choose the number n, such , that conditions

Ascg (/)n_,/fl_)> < cs, (6.1)

654bl+l"+s—lcs‘42 (M) < ]V[lea z €l (6.2)
P

are fulfiled. For this purpose it is sufficient to take n = Agn, where

Ascg G5irthta—lec A,
As = max {[ o + 1] ) [ M By e

in(ﬁt; f.’) = in(J;; f?) + A/[Un(zv EQ)
the sum of polinomials, defined in lemmas 4 and 5. The inequality
fol@) = Qn, (25 fo)| < cagp®w(p), wel (6.3)

follows from (4.1) and (4.8).
With the help of lemmas 4, 5, 8 and 7 we shall prove the estimate

Qn (25 f2)II(2) = (@), (23 fo) = falw) + MU (2; o)) () + fo(2)l(z) >0, 2 €l
(6.4)

We denote by

We notice, that the inequality
fo(2)I(z)> 0,2 € 1. (6.5)

follows directly from the function’s f, definition.

To prove (6.4) we consider four cases.
1) Let € E, . By the construction, the sets E5 and Eq := UI;, where j & Vo, [NE, # ),
doesn’t contain any point y;, ¢ = 1, s — 1, therefore here K,(z) = K, ,(x) = 1. Besides,
from the definitions 2 and 1 it is seen that the function f}(z)is largedn the set E,, namely
| f'(z)] > Apw(p). Hense, for the validity of (6.4) it is sufficient in accordance with (4.2),
(4.10) and (5.4) to verify the inequality

1 pnl(m) T
pon(e) (esrems (Fipar(e)sle = o+ 80 1)+ dzeg (P52) 7w (on, (@)
+M Baopw(p) < Apw(p),
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being satisfied for some 4, say equel to p. It is not difficult, as the numbers n, and A4 are
choosen respectively.
2) Let @ € E5, = E5 \ E,. Sinse (4.9) is valid, so it is sufficient to prove the inequality

Q) (z; f2) = fax)| < M |U;, (25 Es)|. (6.6)

Let ¢ = dist(z, ;). Let us now make use of (4.2), (4.11) and taking into account
(5.4) write

(Cs + AQCQ (E@%%j) B ’_~) pnl(z)w(pnl(.f))l(m(QT)

P

dist(z, E2) + p

)wﬁk“_l Ko(2). (6.7)

< MBoipw(p) (

From the definition of the set F3, ,lemma 7 and (5.1) it is seen , that dist(x, F2) < ca2p.
Besides, for all x € I and n; > n the inequality ,

P (@), (2) < pK (). (6.8)

is true. It follows from this that the choosen n; and M supply the validity of (6.7) and
hence (6.6).

3) Let z € B4\ (Es U E; U Fg). Similary to 2) we have to show that the inequality (6.6)
is valid. Take é§ = dist(x. E;). Taking in to account (4.2), (5.4), (4.11) and equality
fi(z) = 0 we write

~2k-2

Ao (F252) @l () (2)

P

4by+k+s—1
dist(z, F) + p)

< M Baypw(p) ( K, ().

In accordance with (6.8) and the choice of 7 and o,

bitk+s by +k+s—1
P (2) ) | < p )
Ao [ Lm0 < MBy [~—-~>t . 6.9

o <dist(ﬂs, E7) = M7 ist(z, £s) + p (6.9)

Notice, that 14dist(a, E7) > dist(z, Es) + p. Therefore by virtue of (6.1)
144bl+k+s_168 S .AZ[BQI.

This inequality follows from the choice of the number M, therefore the estimate (6.6) is
true.
4) Finally let z € Fg U E; U Es. We take § = oo. In this case (6.6) follows from (4.2),
(4.11), (5.4), (6.2) and equality K,(z) = L, (z) = 1.

Thus the estimate (6.4) is valid for all z € I. This with lemma 3 and (6.3) mean that
the polynomial

Pnl($) = in(l‘;fﬂ) + Gn(lafl)
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of degree < max {As, 5} 25ksn is desired in theorem 1’. Theorem 1’ is proved.

The proof of the theorem 2.

It follows from the theorem 17, that it is sufficient to investigate only the case n = k+ 1.
Let us cosider two situations.
) s > k. Sinse f'(y;) = 0 for all 4 = 1,k, then L(x; f') := L(2; f'5v1,-..,y:) = 0 where
L(z;f'591,...,y;) - the Lagrange polynomlal of deglee < k — 1, which interpolates the
function f'(z) at the points y;,i = 1, k. We denote [y;, ..., ypqo,2; f'] — is the divided
difference of £ —th order of the function f’ associeted with the points y;, ¢ = 1,k. By
[1, p.56] we have

.
£ @ =y oo S e = vl < e(Y (1)

i=1

(¢;(Y)— constants depending of Y). Therefore the polynomial P, = f(—1) is desired in
this theorem.

2) Let s < k. To the collection of points y;,i = I,s let us add (k — s + 1) equdistant
points 1 = ¥, > y,41 > ... > yr+1 = Ys—1. Laking in to account that f € W2Hy | by [,
p-56]

[f'(2) = L (25 [y, oyl < eaf 1)HIT = yi| < es(Y)w(l).

We put

€T

Pi(z):= f(~1) + / (L (us 5910y yn) + co(Yw(DIN(w)) du

B ~1

and note, that P (2)II(x) > 0. Theorem 2 is proved.

The authors are very indebted to prof. J.Gilewicz for his important remarks and
interest for this paper.
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