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Abstract 
A problem on torsion of an elastic medium weakened by mathematical cut on a part of the cylindrical surface is solved 
by exact methods of the linear theory of elasticity. The problem is reduced to a system of dual integral equations with 
respect to the trigonometric functions with one unknown density. Then the Frcdholm integral-differential equation is 
examined. The analytical expressions for the stress intensity factor, the stress components on the cylinder surface out-
side the cut and the difference between the displacements of the cut surfaces are obtained. Data obtained are applicable 
to the study of material damage. 
KEY WORDS: internal nonflat crack, mathematical cut, eigenfunction expansions, cylindrical surface, stress-intensity 

factor. 

1. Introduction 

The cracks in materials are the first steps leading to their fracture. Experiment shows that real cracks are non-
flat and have curved surfaces [1, 2]. Such cracks could be modeled by cuts on a part of some surface of revolution with 
its nonzero curvature. The general approach to solving of mixed boundary problems on equilibrium of three-
dimensional bodies weakened by mathematical cuts on parts of the second-degree surfaces was already done by us in 
[3, 4]. In this paper we study the torsion of elastic spatial body with a crack on a part of cylindrical surface. It is an ap-
proximate mathematical model to the problem on stressed state of a matrix reinforced by cylinders of strength under 
partial separation of the matrix from the reinforcement. 

2. Statement of the problem 

Let us consider an elastic space with a cut on a part of cylindrical sur-
face S ( p = p0, |z| < z 0 , 0 < (p < In) under the torsion symmetric 

about the axis Oz and the plane z = 0. Figure 1 shows a meridian sec-
tion of the crack. We divide the space by the surface S into two 
domains: the inner domain V\ and external one V2. Conditions of 
stresses and displacements fields continuity have to take place on the 
surface S out of the cut. For each domain the Lame vector equation of 
equilibrium 

_ m — 1 , ,. - -
2 graddiv и - rotrot и = 0 1) 

т-2 

must be solved. Here й is the displacement vector, m is Poisson's 
number (m = 1/v, v is Poisson's ratio). The unknown coefficients are 
found from the boundary conditions 

( p = / P 0 , H > z 0 ) , C T ^ = < 7 ™ = / ( z ) , (P = PoM<Zo) (2) 

where func t ion /z ) coresponds to the loading transferred on the cut surface according to the superposition principle [3. 
4]. 

3. iVIethod of solution 

The study of the problem is reduced to solving of system of dual integral equations with respect to the trigo-
nometric functions with one unknown density. Let us introduce dimensionless vari-
ables p / z„ = s , z / z0 = £ , Яг = z~ ' . The components и and apf> are the odd functions of variable r, so we represent 
tbe stresses and displacements f\e\ds by tbe foUows tea\ ¥ounev vategtaXs 
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Fig. I The cylindrical crack in an elastic 
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Gu^s,^) = z9 ja(r)/,(is)sinr^ с/г. Gu2(s^)-za\b{z)Ki(is)sinz^ d r , (3) 
о 0 

а%=)т(т)12(и)зіпт£ dz, cT™*-]Tb(T)K,{vi)sinTZ dr, (4) 
0 (I 

-lb(t) = b(r, za), - ; a ( r ) = a ( r / z 0 ) . 

The boundary conditions (2) in new variables take the form 

«1,(5, 4) = Іф, , < = , ( * = 5„ = P, -t) , £ > 1 ), = «7«' = / ( # , z0) = g (£) , ( J = s 0 , £ < 1 ) (5) 

Satisfying the boundary conditions (5). we get a coupled system of dual integral equations 

-o J TT- sin тЫт = 0 , ( с > I ) - ]zb^)K2^0)sin z^dz = g ( 0 , ( 4 < 1) (6) 
i B . / . l B j о 

The solution to the system (6) will be in the form 

b[t) = ^,I2(Ts„)\<p(t)J,(zt) dt (7) 
о 

where J, (г t) is a cylindrical Bessel function of the first kind of the first order, <p(t) and its derivative are assumed to be 

continuous for 0 < t < 1. According to equality 

• , , , z Hit- z) 
\smzzJ (zt)dz = , (8) 

' J r - z 2 

integral operator (7) satisfies identically the first equation of the system (6). If we substitute (7) into the second equa-
tion of the system (6), change the order of integration and use the integral representation for the function s i n / l [ 5 ] 

1 d :.x'J.(zx)dx !.xJArx)dx 
« » - = - — ) - r ± = L T = v\ ' (9) 

г az a ,JZ- о yjz- _л-

we obtain the following Abel equation 

V u(x) dx 
\ У • = g ( g ) , ( 0 < g < l ) (10) 
8 Jg -X-

where 
і 

u(x) = ~j<p(t)M(t,x)dt (11) 
0 

M(l,x) = )z>sMn0)K2(ts0)J0(zx)xdz (12) 
0 

Having solved Abel integral equation (10), we get 

= с) (ІЗ) 
о л d x о V* 

Let us examine improper integral (12). As follows from the properties of Bessel and McDonald functions [5] 
the integrand does not have singularities on the finite interval. So, convergence of the integral depends on the integrand 
behavior at high values of parameter r. The asymptotic formulas for the Bessel and McDonald functions at high values 
of an argument [5] yield the follows asymptotic dependence for the product of these functions at r » I 

rs„I,(zs„)K2{Ts0) » і r : — = Фо> r ) (14) 
2 1 bs' 

The asymptotic formula (14) allow us to improve the convergence of the integral (12) and present it in the form 
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M{t,x) = - - S , (t-x)-K(t,x) (15) 

where 

<p{x): 

K(t, x) = -~H{t -x) + f[r3j0/ ,(n0)X:2(®0) - а{т, s0)\j0(zx)J{(Tt)dT (16) 
16^- ' o ' 

After substitution (15) into (13) we get the Fredholm integral-differential equation with respect to the function 

jp'M+jrtO JC(t,x)dt = -F(x) 
2 о 

(17) 

where the regular kernel K(t,x) is determined by formula (16). The condition <p(0) = 0 completes the Eq. (17). 

4. Results 

To obtain the stress-tensor component a on the cylinder surface out of the crack, let us substitute (7) into 

the second Eq. (4) and use the integral representation (9). If the order of integration is changed, we have 

- - J і—~~—~ j J<P(0 l^s0I2(ts0)K2^zs0)xJ0(Tx)J^zt)dT 
0 V'f "A" 

dt\, (#>1) (18) 

It is easy to see that £ = 1 is a singular point. So, external integral can be represented by sum of the follows integrals 

f= lim J »0 

\-£ !+£ £ 

J + M 0 I—£ l+£ 

By manipulations of these integrals, we get 

CT j <P( 1) , V F(x)dx 
J Г7Ї г •' 

dx 

2 i y l f - x 2 
\<p{t)K(t,x)dt 

(19) 

(20) 

The stress-intensity factor (SIF) AT3 is obtained from the limiting equality 

K,= lima A 4~21 (21) 

where / is the shortest distance from a point on the cylinder surface ( p = p„ , |г| > z 0) to the limiting circle of the cylin-

drical cut. Substitution (20) into (21) and passing to the limit yield 

(22) 

If we substitute (7) into the first equation (6) and use the integral (8) value when ( £ < 1), we will have the dif-
ference between the displacements of the cut surfaces (crack-opening displacement). The finish result of the manipula-
tions is the follows 

<p(t)dt 
G(u2-U,) = ̂ Z0 J-

It^e 
(23) 

Let us consider an example. Suppose we have the boundary condition (20) in the form cr^, = -(hrnzaq . Hence, 

the right part of the integral equation (17) is the follows FOc) = 9r0z0x, where в is an angle of twisting per unit of 

length. We represent this equation as 

[ і 
— <p'{x)+ j(p(t)K(t,x)dt = X 
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Fig. 2 Dependence of the dimensionless stress intensity 
factor Ky = 2K} / 0rozl

o on the ratio S0 = pa / z0 

where <p(t) = tpi^/dr^Zg ,\s.eme\ K(t,x) is determined by 
formula (16). Figure 2 shows the dimensionless stress 
intensity factor behaviour depending on the ra-
tio S0 = p0 ! z 0 , and Къ = 2Кг / 0roz''l. Figures 3 and 4 
demonstrate the dependencies of the dimensionless stress 
intensity factor К3 = K} / в on the cut length and radius 
with different ratios S0. It is easy to see that conditions 

> о , > 0 are satisfied for all values of z0 and 
dz0 dp0 

p0. As follows from data obtained, the area of the cut is 
the principal parameter for estimation of the stress 
intensity factor. For example, SIF takes the same value for 
the cuts with different geometrical parameters 
z 0 = l , p 0 = 1.5 and z 0 = 1 . 5 , p 0 = l. 

Fig.3 Dependence of the dimensionless stress intensity 
factor Кг = K} / в on the cut length with different 
ratios S0 = p0 / z0 

Fig.4 Dependence of the dimensionless stress intensity 
factor K , = K 3 / 
ratios S0 = p0 / z0 

factor K} = Кj / в on the cut radius with different 

5. Conclusions 

In this paper we obtained an analytical solution to the problem on equilibrium of elastic media with internal 
cylindrical crack in the field of torsional forces. The analytical solution covers all the singularities of the problem, gives 
a general picture of mechanical conditions of the system dependency on the changes in the problem's parameters, such 
as external loading, geometry of the crack, elastic constants, etc., and, thus, allows to foresee the cut's behavior when 
these parameters change. The results of this work show the advantages of such approach. In particular, we obtained the 
analytical expressions for the components of stress tensor, stress intensity factor (SIF) near the edge of cylindrical 
crack, the difference between the displacements of the cut surfaces (crack-opening displacement). We have found the 
dependencies of the dimensionless stress-intensity factor on the cylindrical crack geometry. The area of the cut surface 
is appeared to be the principal parameter for an estimation of the stress intensity factor. 
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