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Abstract— Energy spectra of the graphene-based Fibonacci superlattice (SL)} in the presence of the forbidden
band in graphene have been investigated. The tattice consists of rectangular barriers, which are arranged along
axis Ox. The quasi-periodic modulation is performed due to the difference in the values of the mass surmunand
of the Hamiltonian in various SL elements. It is shown that effective splitting of allowed bands (and thereby
the formation of a series of gaps) under the effect of the quasi-periadic factor is implemented with both
inclined and normal incidence of the electron wave on the SL surface. The energy spectra have the clearly
pronounced periodic character over the entire energy scale, The bands split in separale fragments of the spec-
trum (conventionally periods) according to the Fibonacci inflation rule in each new gencration. The forbid-~
den band associated with a new Dirac point is formed in all Fibonacci generations similarly to the periodic
graphene-based SLs, The location of the Dirac point is independent of the SL period; it is very sensitive to
the potential barrier height and to the width ratio between the quantum well and the barrier, and depends
weakly on the mass summand in the Hamiltonian. The dependence of the spectra on the incidence angle of

the clectron wave is insignificant,
DOI: 10.1134/51063783413120147

1. INTRODUCTION

Tt is known that semiconductor superlattices (SLs)
can play an essential role in controlling the electron
processes in various devices of modern electronics
(see, e.g., [1]). Therefore, great attention is paid to the
investigation of physical properties of SLs. The SLs of
various types are considered, namely, strictly periodic,
disordered, lattices with defects, etc. The structures
intermediate between the periodic and disordercd
structures, or quasi-periodic lattices, e¢.g., the
Fibonacci and the Thue—Morse SLs, occupy a special
place among the SLs, This is associated with their
unusual properties such as self-similarity, the Cantor
nature of the energy spectrum, etc. (see, ¢.g., [2]).

However, starting from 2004, graphene-based
structures attracted great attention, which is naturally
explained by nontrivial properties of graphene,
including electron ones. It is sufficient to cali the anal-
ogy of  electrons of graphene with the Dirac massless
fermions at low energies (which are formally described
by the Dirac massless eguation), the linear variance
law, the chirality property, the Klein tunneling, the
high mobility, the ballistic transport, the unusual Hall
quantum eftect, etc. [3—6]. It should be also taken into
account that graphene is a promising material in mod-
ern electronics from the viewpoint of the substitation
of the silicon technology, the development of which
has come to its limit, by the graphene technology. It is
evident that by virtue of the mentioned properties, the

investigation of physical properties of graphene-based
superlattices is an urgent problem [7—16]. Particularly,
itis shown in [9, 10, 13] that a new Dirac point and the
corresponding forbidden band manifest themselves in
graphene SLs; it is determined through the zero value
of the averaged wave number [9]. In new studies, the
properties of this new gap in various graphenc SLs are
investigated in details. (For brevity, we wiil call this
forbidden band as a “new Dirac” band, and we will
call other gaps in the energy spectrum of the strictly
periodic SL as well as the gaps in the Fibonacci SLs
similar (o them as the Bragg gaps {13, 14]).

A series of methods to form graphene SLs is sug-
gested and implemented in practice [17—19]. We note
that among other ones, it is important to obtain such
graphene-based SLs, in which the forbidden band
exists in the energy spectrum since just its presence
plays the key role in the development of transistor-type
semiconductor devices. Therefore, developers apply
the efforts to the formation of graphene structures with
the sufficiently wide gap. Here, using various methods
such as the use of graphene nanoribbons, the interac-
tion with the substrate, etc.; essential results are
already attained [20—25]. Particularly, developers suc-
ceeded to abtain the gap scveral tenth of electron-volt
wide by chemical methods [23].
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2. CONCRETIZATION OF THE STATEMENT
OF THE PROBLEM AND THE METHOD
FOR CALCULATING THE SPECTRA

In this study, we investigate the energy spectrum of
the graphene-based Fibonacci superiattices in a con-
tinual model. The quasi-periodic modulation along
axis Ox is formed due to the mass summand in the
Hamiltonian A: it accepts one of two different values
in different elements in the SL chain according to the
Fibonacci law. (Similar assumption for the formation
of the SL was particularly considered in [16]). Mainly
the SLs, in which the segments of zero-gap and non-
zero-gap graphene are alternated by the Fibonacci
quasi-periodic rule, are mainly investigated. By virtue
of the essential progress in the technology of forma-
tion of the zero-gap graphene structures, we vary the
values of A in rather broad limits; the nature of sum-
mand A in the Hamiltonian, as it was already men-
tioned, can be different.

Let us consider the SL constructed of two elemerits
o and b presented in Fig. 1, Both clements contain a
quantum well with width w and a potential barrier with
width 4; for element a, parameter A equals A, while
the barrier height is denoted V,; for element b, we have
A, and Vg, respectively. The SL is constructed accord-
ing to the Fibonacci inflation rule: S, = §,_, + 5, _,.
Therefore, for example, for the fourth Fibonacci gen-
eration (sequence), we have 5, = ghaab. Passage con-
ditions of the electron wave through the SL con-
structed for the Nth Fibonacci generation are deter-
mined by the period of this generation, Energy ranges
E, for which the transmission ¢oefficient of electrons
through the lattice 7(E) is close to unity, form the
allowed bands in the energy spectrum, while forbidden
bands correspond to energy segments with 7 <€ |.
Coefficient 7 can be calculated by the method of
transfer matrices expressing it either through the
Green’s functions or through the wave functions. The
latter can be found from the Dirac-type equation cor-
responding to the problem:

[v(o, p) + mvic,+ V()W = EY, (1)

where v & 10° m/s is the Fermi velocity, p = (9, p,) is
the pulse operator, ¢ = (o, 0,)T,, G,, G, are the Pauli
matrices for the pscudospin, ¥{x) is the external

potential, which depends on the coordinate x; I is the
unity two-dimensional matrix; we denote the mass
summand by symbol A as it isaccepied in publications.
Function ¥ is a two-component pseudospinor ¥ =

{Wa, ¥sl”, W4, ¥z are the envelope functions for
graphene sublattices 4 and B, and T is the transposi-
tion. Let us assume that potential ¥{x} consists of peri-
odically repeating rectangular barriers along axis Ox,
and inside each jth barrier, ¥j(x) = const. In this case,
using the translational invariance of the solution over
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Fig. 1. Schematic represcatations of elements ¢ and & coil-
stituting the superlattice.

. . . I ikyy
axis Oy, we can write W45 =W, z¢ ~, and we can
derive for ¥, zfrom Eq. (1)

2
{ily':_lﬁ‘_F(kj'z—k}%)lyﬁ)E = O: (2)

dx

where k; = sga(s, J(E~ V) =AYV 5. = E- V(x) 4,
here and below, measurement unitsc=f=e = vg=1.
If we represent the solutions for eigenfunctions ‘¥ pis
the form of the sum of planar waves moving in the
direct and inverse directions along axis Ox, we derive

Wix) = [a}-emﬂ( 1+] + bje—mﬂ( l_ )} (3)
8; &
>k}

where g, = sg11(5}-+),\fkf2— kf., if kf MR

, - . tq +ik,
:,ka,~kf in the opposite case, gj-i = *—qﬁk——J the
Y
upper line in (3} is referred to sublattice A, and the
lower one is referred to B. The transfer matrix, which
associates wave functions in points x and x + Ax is

found in some studies (see, ¢.g., [9]), and has the form

and ¢, =

M, =

J

1 cos(g;Ax -0} iz;l(qux) . (4)
cos; iz5in{g,Ax) cos(q;dx+86))

where

. .k,
z; = ‘-TZ: 0, = arcsm(zfj.

f 4

The transmission coefficient ol electrons through the
lattice: 7= I,
2cos
‘= -if; ;a(,o * G)
Rype "+R e -R;-Ry

where 0, is the incidence angle of the wave, whilc
matnix R is expressed through the product of matrices

M;:R= HI‘: M, , N is the total aumber of elements
in the sublattice.
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Fig. 2. Dependence of transmission coetficient 7" on elec-
tron encrgy F for the fousth Fibonacci generation. Values
of parameters &k, =0,d=w=05,V,=Vy=5,4,=1, and
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Fig. 3. Tunnel spectrum of the fourth Fibonacci generation
in the energy range of [0, 10]. Parameters are the same as
inFig. 1,

3. RESULTS AND DISCUSSION

Figure 2 shows a part of the tunnel spectrum, i.e.,
the energy dependence of electron transmission coef-
ficient Tfor the SL of the fourth Fibonacci generation
under the condition of the normal incidence of the
electron wave on the lattice (k, = 0). Parameters of the
problem are¢ presented in Fig. 2; Fig. 3 represents the
same specirum in the energy range of [0, 10] (in addi-
tion, V, =¥, =4).
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Fisst of all, when analyzing the spectra, we should
pay attention to the fact that the quasi-periedic mod-
ulation due to parameter A, which is used in this study,
lead to very effective splitting the energy bands and
thereby to the formation of a series of gaps. We empha-
size that this is implcmented with the normal inci-
dence of electrons on the lattice.

Separate fragments can be distinguished in the
spectra, the structure of which is periadically repeated
over the entire energy scale; we can conventionally
assume that one of these fragments of the spectrum is
its period (for example, in the energy range LP in
Fig. 2; in principle, we can also consider the narrower
ranges: it is seen in Fig. 3 that the structure of frag-
ments LO and QF is similar). The characteristic fea-
tuses of the period is the number of the allowed (for-
bidden) bands; their widths vary upon going to higher
E so that the width of gaps decreases as F increases on
average; the natural result of this decrease is the fact
that transmission coefficient 7 asymptotically

approaches unity in a rather far overbarrier region.!
The analysis of the spectra at high enersgies is aut of the
frameworks of our work, and we will further limit our-
selves by energies of the order of several units in the
accepted system of measurement units.

We here want to pay attention to a definite distinc-
tioen: of the situation from the situation in usual SLs
(with the parabolic variance law of charge carriers}. In
contrast to usual SLs, where the bands are usually cai-
culated over the entire barrier region [26, 27], 1t is
appropriate to select definite energy ranges, far exam-
ple, LO, LP (see Figs. 1, 2, and footnote), or other
fixed spectral ranges as applied to graphene structures.

The spectra similar to that presented in Fig.1 for
the fourth generation are also implemented for other
sequences.

The number of bands in each period and the width
of cach of them substantially depend both on the SL
parameters on the one hand and on the number of the
Fibonacci generation on the other hand.,

Energy range LQ requires the special attention. The
mumber of band in this energy range follows the infta-
tion Fibonacci number: Z, = Z, | + Z,_,. This is
confirmed in Fig. 4, where the bands of allowed ener-
gies {solid lines) and forbidden energies (intervals
between the transmission bands, i.c., the gaps) are
depicted. We note that this regularity is referred not
onty w the LY range but also to large energy ranges,

! The variation in the band widths has the oscillating character
rather than the monotonic one, and broadening and narrowing
the band gaps is alternated as £ increases. As a result, braader
periods are formed (conventionally superperiods). In other
words, the result of this wave-like variation in the band width is
grouping of smaller separate structural units into larger ones
with the formation of the additional structural otder, and the
self-similarity property manifests itself in this fact in our prob-
lem,
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Fig. 4. Trace-map for the Fibonacci SL with parameters
k),.=0,d=w=0,5, Vi=Vy=1,4,=1,and A, =0.

namgly, LP etc.; of course, each new superperiod has
its own number of the bands.

1t should be also noted that the formation of L and
O bands is associated with the periodicity factor, while
the formation of the bands intermediate between them
is associated with the quasi-periodicity factor. We can
be easily convinced in this fact by means of calculating
the spectrum for the strictly periodic lattice; for the
same parameters, it has bands L and Q, which are
arranged in the same points on the energy axis.

We can see in Fig, 4 that the forbidden band associ-
ated with new Dirac point Ej, or the “new Dirac gap”
|91, is formed in all Fibonacci generations at definite
energies. It location is almost invariable in various
Fibonacci sequences. A characteristic feature of a new
Dirac gap is the fact that it is independent of the lattice
period (d + w); however, it is very sensitive to the d/w
ratio. This is also indicated by Figs. 3 and 6, where the
T(E) dependence for the fourth Fibonacci generation

W WL

~R0 -
logT

Fig. 5. Spectrum of the fourth Fibonacci generation for
various lattice periods: (f) d =w =05, (D d=w= 0.8,
other parameters as in Fig. 1,
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for various parameters d and w is shown. Let us ones
more pay attention to the fact that the bands split
(thereby with the formation of the series of the gaps)
already in the case of the normal electron incidence on
the SL surface. This result substantially differs from
that found in [13], where the quasi-periodic moduia-
tion was formed duc to the distinction in potentials of
elements (a) barrier and (b) well, and manifested itself
only for the inclined wave incidence (&, = 0).

Figure 7 represents the set of allowed and forbidden
bands for the fourth Fibonacci generation at various
values of parameter A,. It is seen that the effective band
splitting is implemented in a broad range of A,

In the general case, the magnitude of E, depends
on each of parameters d, w, V,, V,, A,, and A,. [t turns
out that the A, A,-dependcence of £, is not significant.
For example, in the case d = wand V, =V, =V, the
location of a new Dirac point is mainly determined by
the potential barrier height and only slightly deviates
from V/2 as A, increases (see all figures, £, = V/2 isthe
exact location of a new Dirac peint in the strictly peri-
odic lattice [9]).

It is of interest to follow the variations in the band
pattern depending on the ratio between quantities A,
and A, since this is precisely the ratio that determines
the efficiency of the quasi-periodic modulation in this
study. This is done with the help of Fig, 8, in which the
spectra of the fourth Fibonacci generation are shown
for three values of ratio A,/A;, namely, atfixed A, = [;
the dashed, the dash-and-dot, and the solid lines cor-
respond to values of Ay, = 0.1, 0.5, and 0.9. Other
parameters are taken such as in Fig. 4. As the differ-
ence between A, and A, decreases, narrowing the gaps
appeared under the effect of the quasi-periodic poten-

—60F

_gol
logT

Fig. 6. Spectrum of the fourth Fibonacei generation for
various 4 and w. The soiid ling corresponds (o 4 = 0.8 and
w=0.5, the dashed line correspondsto d =0.5and w=90 8,
other parameters as in Fig. 1.
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Fig. 7. Dcpendence of the spectrum of the fourth
Fibonacci generation on parameter A,; other parameters
asinFig. 1, V, =V, =2

tial up to their complete disappearance at A, = Ay, i.¢.,
in the case of the strictly periodic SL, is shown,

Figure 9 shows the band structure of the fourth
Fibonacci generation in coordinates E, k,, which
shows the dependence of the spectra on the incidence
angle of the wave. We note that a definite expansion of
the Dirac gap is observed while the & -dependence of
other forbidden bands is very weak. (It is known that a
similar circumstance is ofien met when considered
certain effects in graphene structures; particularly, a
similar result is found in [11]: if the sufficiency strong
effect is observed at &, = 0, then its dependence on %,
is weak; see also the corresponding comment i this
study). The dashed line in Fig. 8§ corresponds to £, =
V/2 = 0.5 almost completely,

Figure 10 represents the results of the calculation of
the conductance for the fourth generation of the SL
under consideration by the known formula

w2
G = G, J.Tcosea’ﬁh 6)
4]
where
3
G, = 2e vaL’

2

fi
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Fig. 8. Dependence of the spectrum of the fourth
Fibonacci generation on the ratio between parameters Ay
and A,

L is the width of the graphene sample along axis Oy, ¢
is the elementary charge, m is the electron mass, and
vy is the Fermi velocity. The parameters arc as follows:
ky=0,V,=V,=2,A,=l,and A, =0, for Fig. 10 (),
d=w=0.35; and for Fig. 10 (2),d=w=10.8. TLis seen
that the first conductance minimum is formed for the
energy corresponding {o the gap associated with a new
Dirac point. As the lattice period changes, the location
of this minimum remains invariable, while ather min-
ima arc shifted along the energy axis. Thus, varying
particularly lattice parameters ¢ and w, we can control
the conductance of the system under consideration.

= 0.5¢ 4

N\

0.2

0.2

0.2 1]
K,
Fig. 9. Band structure of the spectrum of the fourlh

Fibonacci generation depending on parameler k).. Param-
eters are the samwe as in Fig. 2.
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Fig. 10, Dependence of conductance of the SL of the
fourth Fibonacci generation on energy E. 18.
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