УДК 536.24:664.1.048

HEAT TRANSFER PROCESSES EVAPORATION IN DOWNSTREAM FILM FLOWS OF SUGAR SOLUTIONS

V.P. Petrenko, O.M. Riabchuk, M.M. Myroshnik National University of Food Technologies

Key words:	ABSTRACT
heat transfer, modelling,	The complex of experimental studies on downstream liquid heat transfer
sugar solutions,	has been carried out in the experimental unit which allows for the
interfacial friction,	independent formation of phase flow rates, heat flux and concentration.
downstream film flows	The modified hydrodynamic model of parabolic viscous turbulence
Article history:	distribution outside laminar sublayer has been proposed, which led to the
Received 16.09.2015	development of the liquid film heat transfer coefficient calculational
Received in revised form	methods within a rang of the evaporation form the interface.
29.09.2015	The empirical correlation which allows to calculate heat transfer to the films
Accepted 7.10.2015	of water and sugar solutions are proposed, valid in all heat transfer modes,
Corresponding author:	applicable in a vide range of pressure, vacuum and liquid film viscosity.
Petrenkovp@ukr.net	The correlation for the determination of interfacial friction in the
	downstream film flows of water and sugar solutions at low pressure and
	vacuum was developed. It is valid for adiabatic and diabatic flows in the
	pipes of different diameters.

ТЕПЛООБМІН В ПРОЦЕСАХ КИПІННЯ ТА ВИПАРОВУВАННЯ З ВІЛЬНОЇ ПОВЕРХНІ ПЛІВОК ЦУКРОВИХ РОЗЧИНІВ В НИЗХІДНИХ КІЛЬЦЕВИХ ПОТОКАХ

В.П. Петренко, О.М. Рябчук, М.М. Мирошник, канд. техн. наук Національний університет харчових технологій

Наведені результати моделювання теплообміну та міжфазного тертя в режимах випаровування з вільної поверхні та кипіння плівок цукрових розчинів, та відповідні рівняння для їх розрахунку.

Ключові слова: теплообмін, моделювання, цукрові розчини, міжфазне тертя, низхідні кільцеві потоки

Вступ. Одним з основних напрямків енергозберігаючих технології — глибоке використання ВЕР, де превалює частка тепла низького потенціалу. Особливого значення набуває проблема використання ВЕР в цукровій галузі, де експлуатуються потужні випарні установки, хвостова частина яких споживає розріджену пару. За даних умов традиційний спосіб концентрування соків у випарних апаратах Роберта проблематичний, внаслідок наявності значної гідростатичної температурної депресії та низької інтенсивності тепловіддачі при кипінні в трубах в'язких сиропів в режимі природної циркуляції. Зазначені недоліки відсутні в плівкових випарних апаратах, якими комплектуються сучасні випарні установки, методи розрахунку яких в області високих концентрацій під розрідженням недосконалі.

Експериментальних робіт з теплообміну в низхідних кільцевих потоках в зазначеному діапазоні режимних параметрів мало; до того ж, моделювання двофазових потоків здійснювалось на установках, що копіювали реальний випарний апарат, де неможливо відокремити ряд впливових на теплообмін та гідродинаміку факторів.

[©] В.П. Петренко, О.М. Рябчук, М.М. Мирошник, 2015

ПРОЦЕСИ ТА ОБЛАДНАННЯ

Матеріали та методи. Теоретичні роботи по теплообміну в насичених до температури кипіння плівках в режимі випаровування з вільної поверхні базуються на напівемпіричних моделях турбулентності, особливістю яких є експериментально зафіксований факт пригнічення інтенсивності турбулентних пульсацій міжфазною поверхнею [1, 2, 3], а аналіз тепло-гідродинамічних процесів в турбулентних плівках здійснюють на основі пошарової моделі руху пристінної плівки [4, 5]

Вважаючи на складність аналізу на основі згаданих вище моделей турбулентності, видається ефективною проста модель розподілу турбулентної в'язкості, запропонованої М.Д. Мілліонщиковим [6], згідно якої існує ламінарій прошарок товщиною $\delta_n^+ = 7,8$, та тур-

булентний з параболічний профілем турбулентної в'язкості $\frac{v_t}{v} = 0,39 \left(\eta \delta^+ - \delta^+_{_{\mathcal{A}}}\right) (1 - \eta)$ в діапа-

зоні $\frac{7,8}{\delta^+} \le \eta \le 1$. Якщо постійний коефіцієнт у співвідношенні М.Д. Мілліонщикова замінити на функцію $\varepsilon_m = f$ (Re, Re₂), то останній вираз набуває вигляду

$$\frac{v_t}{v} = \varepsilon_m \left(\eta \delta^+ - \delta_n^+ \right) (1 - \eta) , \qquad (1)$$

і стає кореляцією по теплообміну в насичених до температури кипіння плівках розчинів в турбулентному режимі руху, розподіл температури в якій можна знайти з виразу

$$q = -\frac{\lambda}{\delta_{H}} \left(1 + \frac{\Pr}{\Pr_{t}} \left[\varepsilon_{m} \left(\eta \delta_{H}^{+} - \delta_{\pi}^{+} \right) (1 - \eta) \right] \right) \frac{dt}{d\eta}$$
(2)

Вважаючи, що $q = \frac{\lambda}{\delta_{_{H}}\eta_{_{H}}} (t_{cm} - t_{_{H}})$, інтегруючи (2), отримуємо

$$\alpha = \frac{q}{t_{cm} - t_{i}} = \left(\frac{\lambda R_{m}}{\delta_{n}}\right) \left\{ \eta_{n} R_{m} - 2 \left[\operatorname{arctg} \left(\frac{\Pr}{\Pr} \varepsilon_{m} \frac{\delta_{H}^{+} - \delta_{n}^{+}}{R_{m}} \right) - \operatorname{arctg} \left(\frac{\Pr}{\Pr} \varepsilon_{m} \frac{\delta_{H}^{+} (2\eta_{n} - 1) - \delta_{n}^{+}}{R_{m}} \right) \right] \right\}^{-1}, \quad (3)$$

 $\mathbf{\mathcal{A}e} \ \mathbf{\mathcal{R}}_{m} = \sqrt{\left(\frac{\mathbf{Pr}}{\mathbf{Pr}_{r}}\right)^{2} \varepsilon_{m}^{2} \left(2 \, \delta_{n}^{+} \delta_{H}^{+} - \delta_{n}^{+2} - \delta_{H}^{+2}\right) - 4 \left(\frac{\mathbf{Pr}}{\mathbf{Pr}_{r}}\right) \varepsilon_{m} \delta_{H}^{+}}.$

При цьому, постулюється, що термічний опір тепловіддачі зосереджено в неперервному шарі плівки, а поверхневі хвилі виконують роль її турбулізатора, що реалізується через міжфазну дотичну напругу т_/.

Для замикання даної моделі теплоперенесення, на основі якої отримано співвідношення (3) та отримання явного виду функції $\varepsilon_m = f(\text{Re}, \text{Re}_2)$, крім даних з інтенсивності теплообміну необхідні залежності для τ_F та товщини неперервного шару плівки δ_{H} в умовах наявності супутнього парового потоку.

Дослідження тепло-гідродинамічних процесів в низхідних кільцевих потоках виконані на вертикальній трубі із нержавіючої сталі діаметром 22 х 1 мм довжиною 1,5 м з ділянкою стабілізації 1 м, та дослідною ділянкою довжиною 0,5 м, на якій забезпечувалось незалежне формування витрат фаз, концентрацій, температурного напору та розрідження. Модельні рідини — вода та цукрові розчини концентрацією до 72 %, об'ємна щільність зрошення яких змінювалась від 0,04 10⁻³ до 0,55 10⁻³ м²/с. Діапазон зміни швидкості парової фази — 1...45 м/с, розрідження — 0...0,8 бар, чисел Прандтля — 1,7...290. Нагрівання дослідної та стабілізаційної ділянок здійснювалось сухою насиченою парою. Вимірювались: температура стінки труби, температура парового ядра, середньомасова температура плівки, витрати фаз, перепад тиску, розрідження, товщина неперервного шару плівки, тепловий потік.

Результати досліджень. В результаті аналізу отримана функція $\varepsilon_m = f(\text{Re}_1, \text{Re}_2)$, за якої має місце відповідність розрахункових, за співвідношенням (3), та дослідних даних з інтенсивності тепловіддачі в режимі випаровування з вільної поверхні плівки при супутньому паровому потоці за умови $\text{Pr}_t = 1$

ХАРЧОВА ПРОМИСЛОВІСТЬ № 18, 2015

ПРОЦЕСИ ТА ОБЛАДНАННЯ

Процеси харчових виробництв

$$\varepsilon_{m} = 0,03 + \left\{ \frac{0,7 \cdot 10^{-4} \operatorname{Re} \left(10 + 3 \cdot 10^{-3} \operatorname{Re}_{2}\right)^{1,05} \left(\frac{\nu}{\nu_{B}}\right)^{1,1}}{1,5 \left(30 + 0,05 \operatorname{Re}_{2}\right)^{0,2} \left\{ \left[\operatorname{Re}_{2} \left(5 \cdot 10^{-4} - \frac{3 \cdot 10^{-3}}{\operatorname{Re}_{2}^{0,3}} \right) \right]^{2,3} + \frac{40}{\left(0,25 \operatorname{Re}\right)^{0,07}} \right\} \right\},$$
(4)

яка коректна в діапазоні витрат фаз $0,05 \ 10^{-3} \le \Gamma_v \le 0,55 \ 10^{-3} \ M^3/c$; $0,5 \le u_2 \le 45 \ M/c$. Графічно залежність (4) для води наведена на рис. 1.

Рис.1. Залежність $\varepsilon_m = f(\text{Re}_2)$ за співвідношенням (4) для води при t = 100 °C. $1 - \Gamma_v = 0.05 \cdot 10^{-3} \text{ м}^2/\text{c}; 2 - 0.1 \cdot 10^{-3}; 3 - 0.2 \cdot 10^{-3}; 4 - 0.3 \cdot 10^{-3}; 5 - 0.5 \cdot 10^{-3};$

Графіки залежність розподілу турбулентної в'язкості згідно (1, 4) наведені на рис. 2

Рис. 2. Залежність $\frac{v_t}{v} = f(\eta)$ за співвідношеннями (1, 4):

а — вода при *t* = 100 °С, *u*₂ = 10 м/с; *б* — цукровий сироп СР = 70 %; *t* = 100 °С, *u*₂ = 10 м/с. 1 — $\Gamma_v = 0,1 \ 10^{-3} \ \text{m}^2/\text{c}; 2 = 0,3 \ 10^{-3} \ \text{m}^2/\text{c}; 3 = 0,5 \ 10^{-3} \ \text{m}^2/\text{c}.$

Результати вимірювань товщини неперервного прошарку плівки води та цукрових розчинів узагальнені рівнянням

$$\delta_{H} = \left[\left(\frac{3\Gamma_{\nu}\nu}{g} \right)^{\frac{1}{3}} - 0,9 \cdot 10^{-8} \, \mathrm{Re}^{0.95} \right] \left[\exp\left(-10^{-5} \, \mathrm{Re}_2 \right) \right].$$
(5)

Коефіцієнт міжфазного тертя ξ_i отримано з аналізу як власних експериментах даних, так і даних інших авторів, які моделювали водо-повітряні потоки в трубах різних діаметрів

ПРОЦЕСИ ТА ОБЛАДНАННЯ

$$\xi_{i} = \xi_{c} + 3 \cdot 10^{-3} + 4 \cdot 10^{-2} K_{\delta} + \frac{627 (d_{o} / d)}{Fr_{2}^{1,26} \{\exp(1 / S) - 1\}},$$
(6)

де
$$S = (F_{f_2} - H^{1,1}\sqrt{d/d_o})$$
 1,25 · 10⁻² $K_{\delta}^{1,5}$; $K_{\delta} = \sqrt[6]{\frac{\Gamma_v^3 v}{g^2}}\sqrt{\frac{g \rho}{\sigma}}$; $H = \sqrt{\frac{\rho \sigma}{g d^2 \rho_2^2}}$; $d_{\circ} = 0,013$ м;

 $\xi_c = \frac{0,316}{\text{Re}_2^{0,25}}$ — коефіцієнт гідравлічного тертя на суху стінку.

Відповідно, дотична напруга на міжфазній поверхні розраховується як $\tau_i = \xi_i \rho_2 \frac{u_2^2}{2}$.

Співвідношення (6) дійсне при $Fr_2 - H^{1,1}\sqrt{d/d_o} \ge 0$. В іншому випадку $\xi_i = \xi_c + 3 \cdot 10^{-3} + 4 \cdot 10^{-2} K_{\delta}$.

Порівняння результатів розрахунку інтенсивності тепловіддачі в режимі випаровування з вільної поверхні за співвідношеннями (3, 4, 5, 6) для води та цукрового розчину з концентрацією 70 % при атмосферному тиску наведено на рис. 3, 4.

Рис. 3. Залежність $\alpha = f(\Gamma_{v})$ для води при різних значеннях швидкості пари

Лінії відповідають розрахунку за співвідношеннями (3, 4, 5, 6), $1 - u_2 = 5 \text{ м/c}$; 2 - 12; 3 - 20; 4 - 30.

Експериментальні точки відповідають тим же значенням швидкості пари при t = 100 °C

Рис. 4. Залежність α = f(Γ_ν) для цукрових розчинів концентрацією 70 % при різних значеннях швидкості пари

Лінії відповідають розрахунку за співвідношеннями (3, 4, 5, 6), $1 - u_2 = 5 \text{ м/c}; 2 - 12; 3 - 20; 4 - 30.$

Отримані залежності (3, 4) справедливі в режимі випаровування з вільної поверхні за умови відсутності поверхневого кипіння. Аналіз даних показав, що перехід до поверхневого кипіння в плівці води відбувається, якщо досягнута гранична різниця температур між стінкою та ядром потоку рівній $\Delta t_{\min} = \frac{2\sigma T_{\text{нас}}}{r\rho_2 R_c}$ при розмірах мікрозаглиблень на поверхні теплообміну

радіусом $R_c = 0.5 \cdot 10^{-5}$ м. В разі кипіння цукрових розчинів мінімальна різниця температур

повинна бути більша на величину фізико-хімічної температурної депресії ∆фх (CP) при середній масовій концентрації CP.

ХАРЧОВА ПРОМИСЛОВІСТЬ № 18, 2015

ПРОЦЕСИ ТА ОБЛАДНАННЯ

Процеси харчових виробництв

$$\Delta t_{\min} = \frac{2\sigma T_{\mu ac}}{r \rho_2 R_c} + \Delta \phi x \left(C \overline{P} \right)$$
(7)

Ефект інтенсифікації теплообміну в діапазоні $\Delta t \ge \Delta t_{\min}$, внаслідок виникнення поверхневого кипіння, враховується множником:

$$\mathcal{K}_{b} = 1 + 0, 4 \left(\frac{\Delta t - \Delta t_{\min}}{\Delta t_{\min}} \right)^{1,2}, \tag{8}$$

на який слід помножити вираз (3). Якщо температурний напір не перевищує граничного значення $\Delta t \leq \Delta t_{\min}$, то величина $K_b = 1$.

Для інженерних розрахунків коефіцієнт тепловіддачі до насичених плівок води та цукрових розчинів з концентрацією до 72 % в режимах як випаровування з вільної поверхні, так і поверхневого кипіння з супутним паровим потоком і без нього, при незначному тиску та розрідженні пропонується визначати за спрощеним емпіричним рівнянням,

$$Nu = 1,1 \operatorname{Re}^{-\frac{1}{3}} \frac{0,85 + 0,01 P e^{0,2} + 4,5 \cdot 10^{-4} P e^{0,86} \operatorname{Pr}^{-0,2}}{\exp(-1,2 \cdot 10^{-5} \operatorname{Re}_n)} \left(\frac{L}{L_o}\right)^{0,1} K_b$$
(9)

справедливого в усьому дослідженому діапазоні зміни витрат фаз. ($L_0 = 1,5$ м).

Порівняння дослідних даних з інтенсивності тепловіддачі до плівок води та цукрових розчинів з результатами розрахунку по співвідношенню (9) наведено на рис. 5, 6, 7.

Рис. 5. Залежність $\alpha = f(q)$ при атмосферному тиску ($u_2 = 1...3$ м/с). α — вода: 1 — $\Gamma_v = 1.10^{-4} \text{ m}^2/\text{c}; 2 - 2.10^{-4}; 3 - 3.10^{-4}; 4 - 5.5.10^{-4}; 6$ — цукровий розчин концентрацією СР = 50 %, 1 — $\Gamma_v = 0.7.10^{-4} \text{ m}^2/\text{c}; 2 - 1.5.10^{-4}; 3 - 2.2.10^{-4}; 4 - 4.10^{-4}; 6$ — СР = 60 %, 1 — $\Gamma_v = 1.10^{-4} \text{ m}^2/\text{c}; 2 - 2.10^{-4}; 3 - 3.10^{-4}; 4 - 6.10^{-4};$ *e* $- СР = 70 %, 1 — <math>\Gamma_v = 0.5.10^{-4} \text{ m}^2/\text{c}; 2 - 2.10^{-4}; 3 - 3.10^{-4}; 4 - 5.5.10^{-4}$

Лінії відповідають розрахунку за рівнянням (9).

ПРОЦЕСИ ТА ОБЛАДНАННЯ

Рис. 6 Залежність $\alpha = f(u_2)$ при атмосферному тиску $\sigma - вода: 1 - \Gamma_v = 1.10^{-4} \text{ m}^2/\text{c}; 2 - 2.10^{-4}; 3 - 3.10^{-4}; 4 - 5,5.10^{-4};$ $\delta - цукровий розчин концентрацією СР = 50 %, 1 - \Gamma_v = 0,7.10^{-4} \text{ m}^2/\text{c}; 2 - 1.10^{-4}; 3 - 2.10^{-4};$ $4 - 3.10^{-4}; 5 - 4.10^{-4}; 6 - 6.10^{-4}; \beta - CP = 60 %, 1 - \Gamma_v = 1.10^{-4} \text{ m}^2/\text{c}; 2 - 2.10^{-4}; 3 - 3.10^{-4};$ $4 - 4,5.10^{-4}; z - CP = 70 %, 1 - \Gamma_v = 1.10^{-4} \text{ m}^2/\text{c}; 2 - 2.10^{-4}; 4 - 5,5.10^{-4};$

Лінії відповідають розрахунку за рівнянням (9)

Рис. 7. Залежність $\alpha = f(\Gamma_v)$ в області розрідження (Р_{вак} = 74 кПа) при швидкості пари $u_2 = 45$ м/с а — цукровий розчин концентрацією СР = 30 %, 1 — $\Delta t = 2$ °С; 2 —4; 3 — 7; 4 — 9; 6 — СР = 40 %, 1 — $\Delta t = 6$ °С; 2 —11; 3 — 12; в. СР = 60 %, 1 — $\Delta t = 3$ °С; 2 — 5; 3 — 6; 4 — 7; 5 — 10; г. СР = 70 %, 1 — $\Delta t = 5$ °С; 2 — 6; 3 — 7; 4 — 8; 5 — 10; 6 — 11

Лінії відповідають розрахунку за рівнянням (9).

ПРОЦЕСИ ТА ОБЛАДНАННЯ

Процеси харчових виробництв

Встановлено, що виміряна середньомасова температура плівки розчинів в режимі випаровування з вільної поверхні $t_{cp.m}^{accn}$ менша за $t_{hac} + \Delta \phi x \left(C \overline{P} \right)$ в залежності від швидкості парового ядра u_2 та щільності зрошення Γ_{v} . Тому враховуючи, що рівнянням (9) узагальнені дані, визначених як $\alpha = q/(t_{cm} - t_{cp.m}^{accn})$, розрахунок теплового потоку при використанні рівняння (9) слід виконувати як

$$q = \alpha \left[t_{cm} - t_{Hac} - \Delta \phi x \left(C \overline{P} \right) + \delta \Delta t \right].$$
(10)

Вираз для температурної поправки $\delta \Delta t$ має вигляд

$$\delta \Delta t = \Delta \phi x \left(C \overline{P} \right) \left[1 - \exp \left(-0.014 \cdot \sqrt[3]{\frac{u_2^3 \Gamma_v}{g}} \left(\frac{\sigma}{g \rho} \right)^{-0.5} \right) \right]$$
(11)

Порівняння всіх дослідних даних з інтенсивності тепловіддачі до насичених плівок води та цукрових розчинів з результатами розрахунку за співвідношенням (9) наведено на рис. 8.

Рис. 8. Результати порівняння дослідних та розрахункових, за співвідношенням (9), даних з інтенсивності тепловіддачі до насичених плівок води та цукрових розчинів.

Висновки:

1. Модель процесу теплоперенесення в низхідних кільцевих потоках в режимі випаровування з вільної поверхні, згідно якої основний термічний опір зосереджено в неперервному прошарку плівки, а поверхневі хвилі виконують роль її турбулізатора через механізм дії міжфазної дотичної напруги, задовільно відображає отримані експериментально закономірності залежності інтенсивності тепловіддачі від витратних характеристик двофазового потоку при застосуванні моделі турбулентності з пригніченням її інтенсивності міжфазною поверхнею.

2. Аналіз теплообмінних процесів в режимі випаровування з вільної поверхні на основі модифікації моделі турбулентності М.Д. Мілліонщикова з параболічним профілем турбулентної в'язкості за межами ламінарного прошарку, суть якої полягає у заміні постійного коефіцієнта функцію витратних характеристик, дозволив створити кореляцію для узагальнення експериментальних даних, вигляд якої отримано з порівняння розрахункових та дослідних даних з теплообміну.

3. Отримані співвідношення для розрахунку інтенсивності тепловіддачі при кипінні та випаровуванні з вільної поверхні, а також співвідношення для міжфазного гідравлічного тертя можуть бути використані в проектних та перевірних розрахунках плівкових випарних апаратів при концентруванні цукрових розчинів в усьому, з технологічних умов допустимому, діапазоні змін витратних та режимних параметрів двофазового потоку.

ЛІТЕРАТУРА

1. Jepsen J.C. The effect of wave induced turbulence on the rate of absorption of gases in falling liquid films [Teκcτ] / J.C. Jepsen, O.K. Grosser, R.H. Perry // A.I.Ch.E. Journal. — 1966. — № 12. — P. 186-192.

2. Lamourelle A.P. Gas absorption into a turbulent liquid [Tekct] / A.P. Lamourelle, O.C. Sandal // Chemical Engineering Science. — 1972. — Vol. 27, № 3. — P 1035—1043.

3. Ганчев Б.Г. Экспериментальное исследование гидродинамической структуры пленки жидкости при свободном стекании по вертикальной поверхности [Текст] / Б.Г. Ганчев, В.М. Козлов // Теоретические основы химической технологии. — 1973. — № 5. — С. 727—733.

4. Grossman G. Simultaneous heat and mass transfer in absorption of gases in turbulent liquid films [Teκcτ] / G. Grossman, M. Heath // Int. J. Heat Mass Transfer. — 1984. — Vol. 27, № 12. — P 2365-2376.

5. Василенко С.М. Теплообмін в парорідинних течіях теплообмінних апаратів харчових виробництв [Текст] : — автореф. дис. ... д-ра. техн. Наук / С.М. Василенко. — К., 2003. — 37 с.

6. *Миллионщиков М.Д.* Основные закономерности турбулентного течения в пристенных слоях [Текст] / М. Д. Миллионщиков // Атомн. Энергия. — 1970. — Т. 28, вып. 4. — С. 317—320.

ТЕПЛООБМЕН В ПРОЦЕССАХ КИПЕНИЯ И ИСПАРЕНИЯ СО СВОБОДНОЙ ПОВЕРХНОСТИ ПЛЕНОК САХАРНИХ РАСТВОРОВ В НИСХОДЯЩИХ КОЛЬЦЕВЫХ ПОТОКАХ

В.П. Петренко, О.М. Рябчук, М.М. Мирошник

Национальный университет пищевых технологий

Представлены результаты моделирования теплообмена и межфазного трения в режимах испарения со свободной поверхности и кипения пленок сахарных растворов, и соответствующие уравнения для их расчетов.

Ключевые слова: теплообмен, моделирования, сахарные растворы, межфазное трение, нисходящие кольцевые потоки.