Electron-Rich Amino Heterocycles for Regiospecific Synthesis of Trifluoromethyl-Containing Fused Pyridines

Dmitriy M. Volochnyuk,* Alexei O. Pushechnikov, Dmitriy G. Krotko, Dmitriy A. Sibgatulin, Svetlana A. Kovalyova, Andrei A. Tolmachev

Research and Development Center for Chemistry and Biology, National Taras Shevchenko University, 62 Volodymyrska st., Kyiv-33, 01033, Ukraine

Fax +380(44)2696794.; E-mail: dov@fosfor.kiev.ua Received 17 April 2003

Abstract: The reaction of 4,4,4-trifluoro-3-oxobutanoates with the corresponding electron-rich amino heterocycles was investigated. A simple and flexible general procedure for the regiospecific annulation of the trifluoromethylpyridine ring to electron-rich amino heterocycles was proposed. A set of CF_3 -containing fused pyridines in almost quantitative yield was obtained.

Key words: electrophilic aromatic substitutions, annulations, heterocycles, pyridines, fluorine

Since it is known that the furnishing of bioactive molecule with perfluoroalkyl substituents leads to an increase of lipid solubility, and thereby enhances the absorption rate and the transportation in vivo,¹ heterocyclic compounds bearing a trifluoromethyl group are a subject of continuous interest due to their potent pharmacological properties.^{1,2} The most widespread method to produce heterocycles with a trifluoromethyl group is assembly from trifluoromethyl-containing building blocks. Recently the most popular trifluoromethyl-containing building blocks have been the following 1,3-electrophilic reagents: 4-triflouromethyl-1,3-diones,³ β -alkoxyvinyl trifluoromethyl ketones,⁴ and β -trifluoromethylsulfones.⁵ The character of these approaches is the formation of mixtures of regioisomers in a reaction with non-symmetrical binucleophiles. Hence, the aim of current work within this field is the search for experimental conditions and reagents to increase the regioselectivity of the cyclocondensation.

The objective of recent work has been the continuation of our research into an electrophilic substitution of electronrich amino heterocycles and their derivatives.^{6,7} Here we focused on the reaction of 4,4,4-trifluoro-1-(het)aryl-1,3butanediones with a set of electron-rich amino heterocycles. The procedure allows the obtainment of various fused pyridines, such as isooxazolo-, furo-, pyrazolo-, thienopyridines, and pyrido[2,3-*d*]pyrimidines, which have been of great interest in recent years because of the wide variety of their biological and pharmacological properties.^{2c,8}

Synthesis 2003, No. 10, Print: 21 07 2003.

© Georg Thieme Verlag Stuttgart · New York

Earlier, the regioselective interaction of 5-aminopyrazoles **1** with 4,4,4-trifluoro-3-oxobutirates **2f** forming 4- CF_3 pyrazolo[3,4-*b*]pyridones **6** (Scheme 1) has been described.⁹

Scheme 1

However, the regiospecific trifluoromethylpyridine ring annulation to an amino heterocycle has been considered as a feature only of aminopyrazoles. Nevertheless, it was established that beside 5-aminopyrazole, other electron-rich amino heterocyles, namely 5-aminoisooxazole **8**, 6-aminouraciles **9**, 5-amino-2-carboethoxyfuran **10** and 5-amino-2-carbomethoxythiophene **11**, undergo regioselective reaction with 4,4,4-trifluoro-3-oxobutanoates affording CF_3 -containing fused pyridines and pyridones **12–18** in high yield (Schemes 1, 2) (Tables 1, 2).

The structure elucidation of γ -CF₃ fused pyridines was based on data from ¹H, ¹³C and ¹⁹F NMR spectroscopy. The most convincing evidence of the formation of the γ -CF₃ isomer is the chemical shift of a CF₃-group (δ^{19} F –60) and a chemical shift of C(4) (δ^{13} C 130) with a coupling constant ²J_{CF} ca. 35 Hz, otherwise we would expect a chemical shift of the α -CF₃-group at (δ^{19} F –67) and a chemical shift of C(2) at (δ^{13} C 145) (Tables 4, 5).^{10,4a} In addition, the distant spin–spin interaction between fluorine atoms of a CF₃-group and hydrogen atoms of a C(5)– CH₃-group with a coupling constant ⁶J_{HF} ca. 1 Hz is an interesting spectral feature of pyridines **4** and **12** (Table 1).¹¹

Art Id.1437-210X,E;2003,0,10,1531,1540,ftx,en;P03203SS.pdf.

Scheme 2

The synthesis of fused pyridines via cyclocondensation of amino heterocycles with 1,3-dicarbonyl compounds is a well-known process. However, it needs sufficiently harsh reaction conditions. Under these conditions for non-symmetrical β-diketones, regioselectivity has not been observed.¹² Nevertheless, the reaction of 4,4,4-trifluoro-3oxobutanoates with electron-rich amino heterocycles proceeded regiospecifically under mild conditions, refluxing in acetic acid. The selectivity of the reaction with these amino heterocycles can be rationalized by the strong alternation of double bonds in the heterocycle ring and so the amino group-double bond of the ring is almost fully enamine-like. Therefore the initial attack of the active CF_3 -carbonyl group occurs at the *C*-nucleophilic carbon atom of the heterocycle nucleus. In the case of 5-aminopyrazoles, the intermediates 3 or 4 were formed, which were detected by ¹⁹F NMR spectroscopy. The intermediates 4 have been successfully isolated only when 4,4,4-trifluoro-3-oxobutirates 2f were used,⁹ whereas the intermediates 3 from other diones transform spontaneously into the dihydrate of pyrazolopyridine 7 or into the final products 5 (Scheme 1). However, to prove our hypothesis, the reaction of 5-aminopyrazole with the monoelectrophilic analogue of 2 - 1, 1, 1-triflouroacetone (19) – has been carried

Scheme 3

out. As a result, similarly to izatins,⁹ the corresponding tertiary alcohols **20** were obtained (Scheme 3).

We were interested to apply the described procedure to anilines for the assembly of γ -CF₃ quinolines, known to be androgen receptor modulators,¹³ in a similar way. It was found that only electron-rich anilines such as **21**, **22** and **23**¹⁴ could react in the same way as amino heterocycles, giving γ -CF₃ quinolines **24**, **25** and **26**. The reaction of cyclocondensation with less *C*-nucleophilic anilines, such as 3,4,5-trimethoxyaniline or 2,3-dihydro-1,4-benzodioxin-6-amine, does not occur under analogous conditions (Scheme 4) (Table 3).

Scheme 4

In order to study pyridones as entry compounds for subsequent functionalizations, we attempted to transform pyridones **6**, **13**, **16** and **18** into corresponding α chloropyridines. However, it was found that the treatment of 4-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridin-6-one (**6a**) and 4-trifluoromethyl-6,7-dihydrothieno[2,3-*b*]pyridin-6-one (**18**) with POCl₃ did not allow the obtainment of chloro derivatives.¹⁵ In our case, corresponding dichloro-

Scheme 5

Synthesis 2003, No. 10, 1531–1540 © Thieme Stuttgart · New York

Scheme 6

phosphates of 4-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridin-6-oxyl **27** and 4-(trifluoromethyl)thieno[2,3*b*]pyridin-6-oxyl **31**, respectively, (Schemes 5, 6) were isolated in very high yield. These dichlorophosphates were easily transformed into derivative phosphates **28** and **32**. It was expected these phosphates could easily undergo nucleophilic displacement, as a residue of phosphorus acid is a good leaving group. Alas it was not achieved. The target products were prepared in a low yield by boiling dichlorophosphates **27** and **31** in secondary amine, e.g. morpholine.¹⁶ Further we found that pyridones **6** and **18** could be selectively *O*-tosylated giving tosylates **29** and **33**, respectively. Tosylates **29** and **33** underwent nucleophilic displacement under mild conditions with aliphatic amines¹⁷ yielding amino derivatives **30** and **34**, respectively (Schemes 5, 6), the structural analogues of serotonin re-uptake inhibitors.^{8a}

In summary, we propose a useful and convenient procedure for the synthesis of CF_3 -containing fused pyridines in high yield with a vast variety of combinatorial modifications of fragments in the final structures.

Table 1 Yields, Melting Points and ¹H NMR Data of Compounds 3, 4, 6, 11, 13, 14, 18 and 19^f

N	R	R′	Yield (%) ^a	Mp, (°C) ^b	¹ H NMR, δ (ppm), J (Hz)
5a ^c	Ph	Ph	85	144	2.73 (3 H, s, CH ₃), 7.34 (1 H, t, ${}^{3}J_{HH}$ = 7.5, CH), 7.50–7.58 (5 H, m, CH), 7.91 (1 H, s, CH), 8.16 (2 H, d, ${}^{3}J_{HH}$ = 6.6, CH), 8.32 (2 H, d, ${}^{3}J_{HH}$ = 7.8, CH)
5b°	Ph	$\overline{\ }$	92	151–152	2.69 (3 H, q, ${}^{6}J_{\rm HF}$ = 1.2, CH ₃), 7.14 (1 H, dd, ${}^{3}J_{\rm HH}$ = 4.8, ${}^{3}J_{\rm HH}$ = 3.9, CH), 7.31 (1 H, t, ${}^{3}J_{\rm HH}$ = 7.5, CH), 7.47–7.56 (3 H, m, CH), 7.75 (2 H, s, CH), 8.32 (2 H, d, ${}^{3}J_{\rm HH}$ = 7.8, CH)
5c ^d	Ph		94	142–143	2.60 (3 H, s, CH ₃), 7.37 (1 H, m, CH), 7.58 (3 H, br s, CH), 8.21 (3 H, br s, CH), 8.58 (1 H, d, ${}^{3}J_{\rm HH}$ = 4.8, CH), 8.71 (1 H, s, CH), 9.40 (1 H, s, CH)
5d°	Ph	CF ₃	91	74–75	2.77 (3 H, s, CH ₃), 7.36 (1 H, t, ${}^{3}J_{\rm HH}$ = 8.1, CH), 7.54 (2 H, t, ${}^{3}J_{\rm HH}$ = 8.1, CH), 7.80 (1 H, s, CH), 8.23 (2 H, d, ${}^{3}J_{\rm HH}$ = 8.1, CH)
5e ^c	Ph	Me	88	58–59	2.69 (3 H, q, ${}^{6}J_{\rm HF}$ = 1.2, CH ₃), 2.76 (3 H, s, CH ₃), 7.27–7.31 (2 H, m, CH), 7.51 (1 H, t, ${}^{3}J_{\rm HH}$ = 8.1, CH), 8.22 (2 H, d, ${}^{3}J_{\rm HH}$ = 8.1, CH)
5f°	Me	$\overline{\ }$	74	119–120	2.61 (3 H, q, ${}^{6}J_{\rm HF}$ = 1.0, CH ₃), 4.13 (3 H, s, NCH ₃), 7.16 (1 H, t, ${}^{3}J_{\rm HH}$ = 4.8, CH), 7.49 (1 H, d, ${}^{3}J_{\rm HH}$ = 4.8, CH), 7.68 (1 H, s, CH), 7.75 (1 H, d, ${}^{3}J_{\rm HH}$ = 3.9, CH)
5g ^c	Me	CF ₃	77	Oil	2.68 (3 H, q, ${}^{6}J_{HF}$ = 1.1, CH ₃), 4.19 (3 H, s, NCH ₃), 7.70 (1 H, s, CH)
6 ^d	Ph	ОН	86	179–181	2.50 (3 H, s, CH ₃), 6.95 (1 H, s, CH), 7.34 (1 H, t, ${}^{3}J_{HH} =$ 7.6, CH), 7.53 (2 H, t, ${}^{3}J_{HH} =$ 7.6, CH), 8.10 (2 H, d, ${}^{3}J_{HH} =$ 7.6, CH), 12.26 (1 H, br s, NH)
7 °	Ph	CF ₃	36	214	2.26 (3 H, q, ${}^{6}J_{HF}$ = 2.4, CH ₃), 2.40 (1 H, d, ${}^{2}J_{HH}$ = 14.1, CH ₂), 2.56 (1 H, d, ${}^{2}J_{HH}$ = 14.1, CH ₂), 5.78 (1 H, br s, NH ₂), 6.13 (1 H, br s, OH), 6.52 (1 H, br s, OH), 7.36 (1 H, t, ${}^{3}J_{HH}$ = 7.5, CH), 7.47–7.57 (4 H, m, CH)
12a ^d	-	Ph	78	117–119	2.60 (3H, q, $^6J_{\rm HF}$ = 0.9, CH_3), 7.58–7.60 (3 H, m, CH), 8.29–8.32 (2 H, m, CH), 8.38 (1 H, s, CH)
12b ^d	-	$\overline{\ }$	86	143	2.56 (3 H, q, ${}^{6}J_{\rm HF}$ = 1.2, CH ₃), 7.28 (1 H, dd, ${}^{3}J_{\rm HH}$ = 5.1, ${}^{3}J_{\rm HH}$ = 3.9, CH), 7.91 (1 H, dd, ${}^{3}J_{\rm HH}$ = 5.1, ${}^{3}J_{\rm HH}$ = 0.6, CH), 8.31 (1 H, dd, ${}^{3}J_{\rm HH}$ = 3.9, ${}^{3}J_{\rm HH}$ = 0.6, CH), 8.36 (1 H, s, CH)
12c ^c	_	CF ₃	93	43–44	2.73 (3H, q, ${}^{6}J_{\rm HF}$ = 1.2, CH ₃), 7.96 (1 H, s, CH)

Synthesis 2003, No. 10, 1531–1540 © Thieme Stuttgart · New York

Table 1 Yields, Melting Points and ¹H NMR Data of Compounds 3, 4, 6, 11, 13, 14, 18 and 19^f (continued)

N	R	R′	Yield (%) ^a	Mp, (°C) ^b	¹ H NMR, δ (ppm), <i>J</i> (Hz)
13 ^d	_	ОН	88	148-150 ^g	2.46 (3 H, q, ⁶ <i>J</i> _{HF} = 0.9, CH ₃), 7.05 (1 H, s, CH)
15a ^d	-	Ph	56	237–238	1.39 (3 H, t, ${}^{3}J_{\text{HH}}$ = 7.2, CH ₃), 4.42 (2 H, q, ${}^{3}J_{\text{HH}}$ = 7.2, CH ₂), 7.55–7.58 (3 H, m, CH), 7.75 (1H, q, ${}^{5}J_{\text{HF}}$ = 1.2, CH), 8.23–8.26 (2 H, m, CH), 8.37 (1 H, s, CH)
15b ^d	-	$\overline{\ }$	74	172–173	1.42 (3 H, t, ${}^{3}J_{HH} = 7.2$, CH ₃), 4.45 (2 H, q, ${}^{3}J_{HH} = 7.2$, CH ₂), 7.26 (1 H, dd, ${}^{3}J_{HH} = 5.0$, ${}^{3}J_{HH} = 3.8$, CH), 7.76 (1 H, s, CH), 7.85 (1 H, d, ${}^{3}J_{HH} = 5.0$, CH), 8.20 (1 H, d, ${}^{3}J_{HH} = 3.8$, CH), 8.38 (1 H, s, CH)
16 ^d	-	ОН	81	158-160 ^g	1.35 (3 H, t, ${}^{3}J_{\rm HH}$ = 7.2, CH ₃), 4.36 (2 H, q, ${}^{3}J_{\rm HH}$ = 7.2, OCH ₂), 7.11 (1 H, s, CH), 7.64 (1 H, q, ${}^{5}J_{\rm HF}$ = 1.2, CH)
17a ^d	Me	Ph	73	155–156	3.95 (3 H, s, OCH ₃), 7.57 (3 H, m, CH), 8.01 (1 H, s, CH), 8.27 (2 H, m, CH), 8.40 (1 H, s, CH)
17b ^d	Me	\mathcal{I}_{s}	78	159-160	3.94 (3 H, s, OCH ₃), 7.26 (1 H, dd, ${}^{3}J_{HH} = 4.8$, ${}^{3}J_{HH} = 3.9$, CH), 7.85 (1 H, d, ${}^{3}J_{HH} = 4.8$, CH), 7.98 (1 H, s, CH), 8.21 (1 H, d, ${}^{3}J_{HH} = 3.9$, CH), 8.40 (1 H, s, CH)
17c°	Et	CF ₃	63	72–73	1.47 (3 H, t, ${}^{3}J_{\rm HH}$ = 7.2, CH ₃), 4.50 (2 H, q, ${}^{3}J_{\rm HH}$ = 7.2, CH ₂), 7.96 (1 H, s, CH), 8.24 (1 H, s, CH)
18 ^d	Me	OH	84	210 ^g	3.88 (3 H, s, OCH ₃), 7.03 (1 H, s, CH), 7.80 (1 H, q, ⁵ <i>J</i> _{HF} ca. 1, CH)
20a ^d	Ph	-	98	173–175 ^g	1.70 (3 H, s, CH ₃), 2.14 (3 H, s, CH ₃), 5.07 (2 H, br s, NH ₂), 6.57 (1 H, s, OH), 7.25 (1 H, t, ${}^{3}J_{\rm HH}$ = 7.5, CH), 7.40–7.61 (4 H, m, CH)
20b ^c	Me	_	99	84–86	1.76 (3 H, s, CH ₃), 2.19 (3 H, s, CH ₃), 3.55 (3 H, s, NCH ₃), 4.15 (3 H, br s, NH ₂ and OH)
24 ^d	_	Ph	43	107	3.12 [6 H, s, N(CH ₃) ₂], 7.19 (1 H, d, ${}^{4}J_{HH}$ = 2.6, CH), 7.45 (1 H, dd, ${}^{3}J_{HH}$ = 9.6, ${}^{4}J_{HH}$ = 2.6, CH), 7.53–7.57 (3 H, m, CH), 7.89 (1H, dq, ${}^{3}J_{HH}$ = 9.6, ${}^{5}J_{HF}$ = 1.2, CH), 8.01 (1 H, s, CH), 8.28 (2 H, m, CH)
25a ^c	_	s s	63	114–115	1.17 (3 H, s, CH ₃), 1.22 (3 H, d, ${}^{3}J_{HH}$ = 6.6, CH ₃), 1.39 (3 H, s, CH ₃), 2.88 (3 H, s, NCH ₃), 3.25 (1 H, q, ${}^{3}J_{HH}$ = 6.6, CH), 6.92 (1 H, s, CH), 7.15 (1 H, dd, ${}^{3}J_{HH}$ = 5.1, ${}^{3}J_{HH}$ = 3.3, CH), 7.45 (1 H, d, ${}^{3}J_{HH}$ = 5.1, CH), 7.53 (1 H, q, ${}^{5}J_{HF}$ = 1.2, CH), 7.69 (1 H, d, ${}^{3}J_{HH}$ = 3.3, CH), 7.72 (1 H, s, CH)
25b°	-	CF ₃	60	46–49	1.20 (3 H, s, CH ₃), 1.24 (3 H, d, ${}^{3}J_{HH}$ = 6.6, CH ₃), 1.41 (3 H, s, CH ₃), 2.90 (3 H, s, NCH ₃), 3.34 (3 H, q, ${}^{3}J_{HH}$ = 6.6, CH), 6.98 (1 H, s, CH), 7.62 (2 H, m, CH)
26°	-	$\[\] s$	31	132	3.96 (3 H, s, OCH ₃), 3.97 (3 H, s, OCH ₃), 6.61 (1 H, d, ${}^{4}J_{HH} = 2.4$, CH), 7.13 (1 H, d, ${}^{4}J_{HH} = 2.4$, CH), 7.17 (1 H, dd, ${}^{3}J_{HH} = 5.1$, ${}^{3}J_{HH} = 3.9$, CH), 7.49 (1 H, dd, ${}^{3}J_{HH} = 5.1$, ${}^{4}J_{HH} = 1.9$, CH), 7.75 (1 H, dd, ${}^{3}J_{HH} = 3.9$, ${}^{4}J_{HH} = 1.9$, CH), 7.96 (1 H, s, CH)

^a Yields refer to pure isolated products.

^b Melting points are uncorrected.

° CDCl₃.

^d DMSO- d_6 .

 $^{\rm e}$ Acetone- $\vec{d}_6.$ $^{\rm f}$ Satisfactory microanalysis data were obtained: C \pm 0.33; H \pm 0.45; N \pm 0.25.

^g Sublimation.

Table 2Yields, Melting Points and ${}^{1}H$ NMR Data^c of Compounds 14^d

N	R″	R‴	R′	Yield (%) ^a	Mp (°C) ^b	¹ H NMR, δ (ppm), J (Hz)
14a	Bn	Н	Ph	92	239	5.52 (2 H, s, NCH ₂), 7.21 (1 H, t, ${}^{3}J_{HH}$ = 7.5, CH), 7.28 (2 H, t, ${}^{3}J_{HH}$ = 7.5, CH), 7.40 (2 H, d, ${}^{3}J_{HH}$ = 7.5, CH), 7.49–7.54 (3 H, m, CH), 8.04 (1 H, s, CH), 8.11 (2 H, d, ${}^{3}J_{HH}$ = 6.3, CH), 11.98 (1 H, s, NH)
14b	Bn	Н	\mathcal{I}_{s}	91	253	5.42 (2 H, s, NCH ₂), 7.17–7.31 (4 H, m, CH), 7.46 (2 H, d, ${}^{3}J_{HH} = 7.5$, CH), 7.82 (1 H, d, ${}^{3}J_{HH} = 4.8$, CH), 8.02 (1 H, s, CH), 8.17 (1 H, d, ${}^{3}J_{HH} = 3.6$, CH), 11.91 (1 H, s, NH)
14c	Bn	Н	CF ₃	95	156–158	5.37 (2 H, s, NCH ₂), 7.20–7.29 (3 H, m, CH), 7.42 (2 H, d, ${}^{3}J_{HH} = 7.5$, CH), 7.84 (1 H, s, CH), 12.19 (1 H, br s, NH)

Table 2	Yields, Melting Points and ¹ H NMR D	Data ^c of Compounds 14 ^d (continued)
---------	---	---

N	R″	R‴	R′	Yield (%) ^a	Mp (°C) ^b	¹ H NMR, δ (ppm), J (Hz)
14d	Bn	Η	Me	73	200–202	2.63 (3 H, s, CH ₃), 5.34 (2 H, NCH ₂), 7.25–7.28 (3 H, m, CH), 7.37 (2 H, d, ${}^{3}J_{HH} = 6.6$, CH), 7.52 (1 H, s, CH), 11.88 (1 H, s, NH)
14e	Me	Me	\mathcal{I}_{s}	90	180–183	3.30 (3 H, s, NCH ₃), 3.62 (3 H, s, NCH ₃), 7.26 (1 H, dd, ${}^{3}J_{HH} = 5.4$, ${}^{3}J_{HH} = 3.3$, CH), 7.89 (1 H, d, ${}^{3}J_{HH} = 5.4$, CH), 8.01 (1 H, s, CH), 8.19 (1 H, d, ${}^{3}J_{HH} = 3.3$, CH)

^a Yields refer to pure isolated products. ^b Melting points are uncorrected. ^c DMSO-*d*₆.

 d Satisfactory microanalysis data were obtained: C \pm 0.28; H \pm 0.45; N \pm 0.18.

Table 3 Yields, Melting Points and ¹ H NMR Data of Compounds 27–30 and 32	– 34 ^g
--	--------------------------

N	NRR′	Yield (%) ^a	Mp (°C) ^b	¹ H NMR, δ (ppm), J (Hz)
27 ^e	_	87	110	2.43 (3 H, q, ${}^{6}J_{\rm HF}$ = 1.5, CH ₃), 6.73 (1 H, s, CH), 7.02 (1 H, t, ${}^{3}J_{\rm HH}$ = 8.1, CH), 7.29 (2 H, t, ${}^{3}J_{\rm HH}$ = 8.1, CH), 8.38 (2 H, d, ${}^{3}J_{\rm HH}$ = 8.1, CH)
28^{f}	-	86	68–70	2.65 (3 H, q, ${}^{6}J_{\rm HF}$ = 1.5, CH ₃), 7.27–7.46 (14 H, m, CH), 8.11 (2 H, d, ${}^{3}J_{\rm HH}$ = 7.2, CH)
29 ^d	_	84	151–153	2.44 (3 H, s, CH ₃), 2.61 (3 H, s, CH ₃), 7.35–7.51 (6 H, m, CH), 7.77 (2 H, d, ${}^{3}J_{\rm HH} =$ 7.8, CH), 7.89 (2 H, d, ${}^{3}J_{\rm HH} =$ 8.1, CH)
30a ^c	N	68	126	1.71 (6 H, m, CH ₂), 2.58 (3 H, q, ${}^{6}J_{HF}$ = 1.2, CH ₃), 3.72 (4 H, m, NCH ₂), 6.87 (1 H, s, CH), 7.25 (1 H, t, ${}^{3}J_{HH}$ = 7.5, CH), 7.48 (2 H, t, ${}^{3}J_{HH}$ = 7.5, CH), 8.19 (2 H, d, ${}^{3}J_{HH}$ = 7.5, CH)
30b ^c	N	72	137–139	2.61 (3 H, s, CH ₃), 3.70 (4 H, t, ${}^{3}J_{HH}$ = 5.1, NCH ₂), 3.86 (4 H, t, ${}^{3}J_{HH}$ = 5.1, OCH ₂), 6.86 (1 H, s, CH), 7.26 (1 H, t, ${}^{3}J_{HH}$ = 7.5, CH), 7.49 (2 H, t, ${}^{3}J_{HH}$ = 7.5, CH), 8.16 (2 H, d, ${}^{3}J_{HH}$ = 7.5, CH)
30c°	N	53	87	2.37 (3 H, s, NCH ₃), 2.53–2.60 (7 H, m, NCH ₂ and CH ₃), 3.76 (4 H, t, ${}^{3}J_{HH} = 4.5$, NCH ₂), 6.85 (1 H, s, CH), 7.27 (1 H, t, ${}^{3}J_{HH} = 7.5$, CH), 7.47 (2 H, t, ${}^{3}J_{HH} = 7.5$, CH), 8.18 (2 H, d, ${}^{3}J_{HH} = 7.5$, CH)
30d ^c	N CO ₂ Et	62	112	1.27 (3 H, t, ${}^{3}J_{HH} = 6.6$, CH ₃), 1.83 (2 H, m, CH ₂), 2.04 (2 H, m, CH ₂), 2.59 (4 H, br s, CH ₃ and CH), 3.19 (2 H, t, $J_{HH} = 12.3$, NCH ₂), 4.16 (2 H, q, ${}^{3}J_{HH} = 6.6$, OCH ₂), 4.37 (2 H, d, ${}^{2}J_{HH} = 12.3$, NCH ₂), 6.87 (1 H, s, CH), 7.26 (1 H, t, ${}^{3}J_{HH} = 7.5$, CH), 7.48 (2 H, t, ${}^{3}J_{HH} = 7.5$, CH), 8.18 (2 H, d, ${}^{3}J_{HH} = 7.5$, CH)
30e ^c	N Ph	63	109	1.21–1.39 (2 H, m, CH ₂), 1.60–1.59 (5 H, m, CH ₂ , CH and PhCH ₂), 2.58 (3 H, s, CH ₃), 2.95 (2 H, t, $J_{\rm HH}$ = 13.5, NCH ₂), 4.46 (2 H, d, $^{2}J_{\rm HH}$ = 13.5, NCH ₂), 6.86 (1 H, s, CH), 7.15–7.36 (6 H, m, CH), 7.46 (2 H, t, $^{3}J_{\rm HH}$ = 7.5, CH), 8.18 (2 H, d, $^{3}J_{\rm HH}$ = 7.5, CH)
30f ^d	NH	43	174–176	2.46 (3 H, s, CH ₃), 3.50 (2 H, br m, NCH ₂), 3.63 (2 H, br m, OCH ₂), 4.67 (1 H, br s, OH), 6.89 (1 H, s, CH), 7.24 (1 H, t, ${}^{3}J_{\text{HH}} = 7.2$, CH), 7.46 (2 H, t, ${}^{3}J_{\text{HH}} = 7.2$, CH), 7.70 (1 H, br s, NH), 8.23 (2 H, d, ${}^{3}J_{\text{HH}} = 7.2$, CH)
32 ^e	_	59	107–108	3.35 (3 H, s, OCH ₃), 3.56 [6 H, d, ${}^{3}J_{\rm HP}$ = 12.0, P(OCH ₃) ₂], 6.87 (1 H, s, CH), 8.01 (1 H, q, ${}^{5}J_{\rm HF}$ = 1.5, CH)
33 ^d	_	73	98–99	2.47 (3 H, s, CH ₃), 3.95 (3 H, s, OCH ₃), 7.50 (2 H, d, ${}^{3}J_{HH} = 7.8$), 7.68 (1 H, s, CH), 7.94 (2 H, d, ${}^{3}J_{HH} = 7.8$, CH), 8.04 (1 H, s, CH)
34a°	N	72	115–116	1.76 (6 H, m, CH ₂), 3.73 (4 H, m, NCH ₂), 3.93 (3 H, s, OCH ₃), 6.97 (1 H, s, CH), 7.93 (1 H, q, ${}^{5}J_{\rm HF}$ ca. 1, CH)
34b	N	52	156–157	1.30 (6 H, d, ${}^{3}J_{HH}$ = 6.6, CH ₃), 2.71 (2 H, t, J_{HH} = 11.7, NCH ₂), 3.72 (2 H, m, OCH), 3.94 (3 H, s, OCH ₃), 4.26 (2 H, d, ${}^{2}J_{HH}$ = 11.7), 6.95 (1 H, s, CH), 7.97 (1 H, s, CH)
34c	N	64	120–121	2.37 (3 H, s, NCH ₃), 2.55 (4 H, t, ${}^{3}J_{HH} = 5.1$, NCH ₂), 3.77 (4 H, t, ${}^{3}J_{HH} = 5.1$, NCH ₂), 3.94 (3 H, s, OCH ₃), 6.96 (1 H, s, CH), 7.96 (1 H, q, ${}^{5}J_{HF} = 1.8$)

Synthesis 2003, No. 10, 1531-1540 © Thieme Stuttgart · New York

Table 3 Yields, Melting Points and ¹ H NMR Data of Compounds 27–30	and $32-34^{g}$	(continued)
--	-----------------	-------------

Ν	NRR′	Yield (%) ^a	Mp (°C) ^b	¹ H NMR, δ (ppm), J (Hz)
34d °	N	75	160–161	2.07 (4 H, m, CH ₂), 3.59 (4 H, m, NCH ₂), 3.93 (3 H, s, OCH ₃), 6.71 (1 H, s, CH), 7.96 (1 H, q, ${}^{5}J_{\rm HF}$ = 1.5, CH)
34e ^e	N	71	116–117	1.13 (4 H, m, CH ₂), 1.31 (4 H, m, CH ₂), 3.12 (4 H, br m, NCH ₂), 3.40 (3 H, s, OCH ₃), 6.52 (1 H, s, CH), 8.26 (1 H, s, CH)

^a Yields refer to pure isolated products.

^b Melting points are uncorrected.

° CDCl₃.

^d DMSO- d_6 .

^e C₆D₆. ^f CD₃CN.

 g Satisfactory microanalysis data were obtained: C \pm 0.40; H \pm 0.45; N \pm 0.34; except for: 27 and 28: H \pm 0.80; N \pm 0.95.

N	¹⁹ F NMR δ (ppm)	¹³ C NMR, δ (ppm), J (Hz)									
		Me at C(3)	C(3)	C(3a)	C(4)	C(5)	C(6)	C(7a)	CF ₃	R at C(2)	R at C(6)
5c ^a	-62.1	13.3 (1.5)	140.0	109.3 (1.5)	131.3 (33.6)	109.7 (4.3)	153.3	151.5	121.6 (273.6)	120.2, 125.2, 128.0, 137.8	122.8 132.3, 133.8, 147.7, 150.0
5d ^b	-62.1	14.5	140.5	108.6 (1.5)	130.3 (33.4)	114.8 (4.3)	151.8	151.5	123.2 (273.0)	121.4, 126.6, 129.6, 139.0	25.1
5f ^b	-62.5	14.3 (1.7)	143.3	107.1	130.8 (34.4)	109.4 (2.3)	151.8	151.6	123.2 (272.6)	34.0	129.1, 129.3, 131.0, 138.4
5g ^a	-61.8, -68.0	14.1 (2.9)	139.8	111.1	133.2 (34.9)	108.6	146.7 (36.0)	151.2	122.2 (274.0)	34.1	121.1 (274.7)
6 ^b	-60.7	13.9	150.4	104.7	132.5 (33.6)	103.9 (4.3)	163.4	140.3	125.0 (273.7)	121.1, 126.0, 129.0, 138.5	-
7 °	-77.3, -83.6	14.1	143.3 (4.6)	97.7	70.5 (31.1)	35.2	83.2 (29.5)	146.3	126.0 (285.0)	123.2, 127.5, 129.9, 138.9	124.1 (283.3)
12a ^b	-61.2	12.5	159.4	107.2	133.5 (39.5)	114.0 (4.4)	154.6	170.7	122.4 (274.5)	_	128.3, 129.6, 131.7, 136.3
12c ^b	-60.8, -67.0	12.6	155.3	107.2	135.4 (36.0)	114.3	148.2 (36.0)	169.5	121.8 (274.3)	_	121.0 (276.1)
13 ^b	-61.9	12.1	154.1 (11.3)	100.3	134.4 (34.8)	106.6	166.1	170.6	122.2 (273.2)	_	_
30a ^b	-62.3	14.6	140.8	102.3	131.8 (31.1)	101.6	157.8	152.0	123.4	120.5, 125.7, 129.5, 139.6	24.6, 25.6, 46.6

Table 4 ¹⁹F and ¹³C NMR Data of Pyrozolopyridines (X = NPh or NMe) and Isoxazolopyridines (X=O) obtained.

^a CDCl₃.

^b DMSO- d_6 .

^c Acetone- d_6 .

Ν	¹⁹ F NMR, δ (ppm)	¹³ C NMR, δ (ppm), <i>J</i> (Hz)									
		C(2)	C(3)	C(3a)	C(4)	C(5)	C(6)	C(7a)	CF ₃	R at C(6)	R at C(6)
15b ^a	-61.9	146.3	113.3	113.6	133.4 (34.9)	111.2	152.0	161.8	122.3 (274.5)	14.5, 62.4, 158.3	129.3, 129.5, 131.6, 142.7
16 ^a	-62.5	143.6	111.7	107.1	134.9 (34.5)	106.1	158.5	161.6	122.8 (273.4)	14.6, 62.0, 164.5	-
17b ^a	-63.8	134.6	125.3	125.1	133.5 (33.8)	113.8	153.0	163.6	121.6 (273.6)	53.6, 161.9	129.5, 129.8, 132.0, 142.7
17c ^a	-64.0, -68.2	140.3	124.5	129.8	134.8 (35.8)	114.9	146.7 (36.0)	163.0	122.7 (273.5)	14.5, 63.2, 161.1	121.3 (275.1)
18 ª	-63.3	135.3	126.0	121.4	133.8 (36.3)	124.1	163.2 (3.9)	135.7	124.9 (273.7)	53.3, 162.2	-
34a ^a	-64.9	126.4	126.0	116.8	133.9 (32.6)	104.4 (5.0)	157.5	165.1	123.5 (274.4)	53.1, 162.6	24.6, 25.8, 46.3

^a DMSO- d_6 .

¹H, ³¹P and ¹⁹F NMR spectra were recorded on a Varian VXR-300 spectrometer and ¹³C NMR spectra were recorded on a Varian Mercury-400 spectrometer. ¹H and ¹³C (300 and 100 MHz, respectively) with TMS as an internal standard; ³¹P (121 MHz) with 85% H₃PO₄ as an external standard; ¹⁹F (282.2 MHz) with CFCl₃ as an internal standard. Mass-spectra were obtained on a Hewlett–Packard HP GC/MS 5890/5972 instrument (EI, 70 eV). Column chromatography was performed on silica gel (63–200 mesh, Merck). Silica gel Merck 60F₂₅₄ plates were used for TLC. Analytical data are given in Tables 1–5.

Commercially unavailable starting amino heterocycles (5-aminopyrazoles 1,¹⁷ 5-aminoisooxazoles 8,¹⁸ 5-aminouracyles 9,¹⁹ 2-aminofuran 10,²⁰ 2-aminothiophenes 11^{21} and 1,2,3,3-tetramethyl-2,3dihydro-1*H*-6-indolylamine 20^{22}) were prepared according to the literature.

1-R,6-R'-3-Methyl-4-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridines (5); Typical Procedure

A mixture of aminopyrazole 1 (3.00 mmol) and diketone 2 (3.00 mmol) in HOAc (15 mL) was refluxed for 2–4 h [the reaction mixture was monitored by TLC (silica gel; EtOAc)]. HOAc was evaporated in vacuo and the residue was triturated with H_2O and crystallized from 2-propyl alcohol.

Exception: the substance 5g was purified by column chromatography (silica gel; EtOAc-cyclohexane, 1:1; $R_f 0.90$).

Compound 5f

MS (EI): m/z (%) = 297 (M⁺, 100), 296 (68), 282 (12), 229 (8.6), 160 (9).

3-Methyl-1-phenyl-4-trifluoromethyl-6,7-dihydro-1*H*-pyrazolo[3,4-*b*]pyridin-6-one (6)

Compound **6** was prepared from aminopyrazole **1a** and ethyl 4,4,4-trifluoro-3-oxobutanoate **2f** using the above procedure for **5**.

MS (EI): *m/z* (%) = 293 (M⁺, 100), 278 (13), 252 (11), 118 (11), 77 (28), 51 (12).

3-Methyl-1-phenyl-4,6-bis(trifluoromethyl)-4,5,6,7-tetrahydro-1*H*-pyrazolo[3,4-*b*]pyridine-4,6-diol (7)

To a solution of aminopyrazole 1a (519 mg, 3.00 mmol) in EtOH (5 mL) hexafluoroacetylacetone 2d (624 mg, 3.00 mmol) and a few crystals of iodine were added and the solution was refluxed for 30 min. After cooling the crystalline precipitate formed was filtered off.

6-R'-3-Methyl-4-trifluoromethylisoxazolo[5,4-b]pyridines (12)

Compounds 12 were prepared from aminoisoxazole 8 and diketones 2 using the above procedure for 5, with exception of 12c, which was purified by column chromatography (silica gel; EtOAc–cyclohexane, 1:1; $R_f 0.89$).

Compound 12b

MS (EI): m/z (%) = 284 (M⁺, 100), 256 (15), 241 (29), 215 (16), 197 (11), 146 (25), 69 (10), 45 (9).

3-Methyl-4-trifluoromethyl-6,7-dihydroisoxazolo[5,4-*b*]pyridin-6-one (13)

Compound **13** was prepared from aminoisoxazole **8** and ethyl 4,4,4-trifluoro-3-oxobutanoate **2f** using the above procedure for **5**.

MS (EI): *m/z* (%) = 218 (M⁺, 100), 199 (11), 190 (18), 176 (22), 149 (13), 121 (17), 106 (31), 70 (20), 63 (16), 42 (26).

1-R''-3-R'''-7-Methyl-5-trifluoromethyl-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-2,4-diones (14)

Compounds 14 were prepared from aminouracyles 9 and diketones 2 using the above procedure for 5.

Compound 14d

¹³C NMR (DMSO-*d*₆): δ = 24.7 (CH₃), 44.5 (NCH₂Ph), 104.9 [*C*(4a)], 116.2 [³*J*_{CF} = 6.6, *C*(6)], 121.7 (¹*J*_{CF} = 273.6, CF₃), 126.9 [*C*(*p*-Ph)], 127.7 [*C*(*o*-Ph)], 128.0 [*C*(*m*-Ph)], 136.9 [*C*(*ipso*-Ph)], 137.6 [²*J*_{CF} = 34.3, *C*(5)], 149.8 [*C*(2)], 152.8 [*C*(8a)], 158.0 [*C*(7)], 164.9 [*C*(4)].

¹⁹F NMR (DMSO): $\delta = -60.1$.

Compound 14e

MS (EI): m/z (%) = 341 (M⁺, 100), 313 (16), 272 (13), 229 (81), 160 (19).

6-R'-2-Carboethoxy-4-trifluoromethylfuro[**2**,**3-***b*]**pyridines** (**15**) Compounds **15** were prepared from aminofurane **10** and diketones **2** using the above procedure for **5**.

Compound 15b

MS (EI): *m*/*z* (%) = 341 (M⁺, 100), 313 (91), 296 (19), 269 (30), 240 (19), 190 (9), 176 (9).

2-Carboethoxy-4-trifluoromethylfuro[2,3-*b*]pyridin-6-one (16)

Compound **24** was prepared from aminofuran **10** and ethyl 4,4,4-trifluoro-3-oxobutanoate **2f** using the above procedure for **5**.

MS (EI): *m*/*z* (%) = 275 (M⁺, 93), 247 (98), 230 (100), 203 (92), 147 (45), 155 (23), 146 (33), 126 (27), 69 (19).

6-R'-2-Carboalkoxy-4-trifluoromethylthieno[2,3-*b*]pyridines (17)

Compounds 14 were prepared from aminothiophenes 11 and diketones 2 using the above procedure for 5, with the exception of 17c, which was purified by column chromatography (silica gel; EtOAc-cyclohexane, 1: 1; R_f 0.87).

Compound 17b

MS (EI) m/z (%) = 343 (M⁺, 100), 312 (73), 284 (7), 264 (10), 240 (9), 215 (19), 156 (5).

2-Carbomethoxy-4-trifluoromethylthieno[2,3-*b*]pyridin-6-one (18)

Compound **25** was prepared from aminothiophene **11a** and ethyl 4,4,4-trifluoro-3-oxobutanoate **2f** using the above procedure for **5**.

MS (EI): *m*/*z* (%) = 277 (M⁺, 58), 246 (100), 190 (15), 163 (33), 119 (8), 94 (7), 69 (11).

2-(5-Amino-1-R,3-methyl-1*H*-4-pyrazolyl)-1,1,1-trifluoro-2propanols (20); Typical Procedure

To an aminopyrazole **1** (3.00 mmol), trifluoroacetone **19** (2 mL) and a few crystals of iodine were added and the heterogeneous reaction mixture was refluxed 10 min. After cooling the reaction mixture was maintained at r.t. for 1 h. The excess of trifluoroacetone was evaporated in vacuo and the residue was crystallized from toluene (for **20a**) or a mixture toluene–cyclohexane (for **20b**).

Compound 20a

¹³C NMR (DMSO-*d*₆): δ = 15.6 (CH₃), 23.2 (CH₃), 72.6 (²*J*_{CF} = 27.6, CF₃*C*), 98.8 [*C*(4)], 123.7 [*C*(*o*-Ph)], 126.9 [*C*(*p*-Ph)], 127.5 (¹*J*_{CF} = 287.4, CF₃), 129.7 [*C*(*m*-Ph)], 139.3 [*C*(*i*-Ph)], 146.0 [*C*(3)], 146.8 [*C*(5)].

¹⁹F NMR (DMSO): δ = -83.0.

Compound 20b.

¹³C NMR (DMSO-*d*₆): δ = 15.4 (CH₃), 23.2 (CH₃), 34.2 (NCH₃), 72.4 (²*J*_{CF} = 27.9, CF₃*C*), 97.7 [C(4)], 127.6 (¹*J*_{CF} = 277.8, *C*F₃), 143.2 [C(3)], 146.7 [C(5)].

¹⁹F NMR (DMSO): δ = -84.2.

7-(*N*,*N*-Dimethylamino)-2-phenyl-4-trifluoromethylquinoline (24)

Compound 24 was prepared from aniline 21 and diketone 2a using the above procedure for 5 and was purified by column chromatography (silica gel; EtOAc, $R_f 0.68$).

¹³C NMR (DMSO-*d*₆): δ = 40.3 [N(CH₃)₂], 107.1 [C(6)], 111.3 [${}^{3}J_{CF}$ = 2.8, C(3)], 113.3 [C(4a)], 118.5 [C(8)], 124.1 [C(5)], 124.3 (${}^{1}J_{CF}$ = 274.5, CF₃), 127.7 [*C*(*m*-Ph)], 129.4 [*C*(*o*-Ph)], 130.4 [*C*(*p*-Ph)], 133.7 [${}^{2}J_{CF}$ = 31.5, C(4)], 138.5 [*C*(*ipso*-Ph)], 150.9 [*C*(8a)], 151.8 [*C*(2)], 156.3 [*C*(7)].

MS (EI): m/z (%) = 316 (M⁺, 100), 315 (68).

7-R'-1,2,3,3-Tetramethyl-5-trifluoromethyl-2,3-dihydro-1*H*-pyrrolo[3,2-*g*]quinolines (25)

Compounds **25** were prepared from aniline **22** and diketones **2** using the above procedure for **5** and were purified by column chromatography (silica gel; EtOAc–cyclohexane; 1:1).

Compound 25a

R_f (EtOAc-cyclohexane,1:1) 0.88.

¹³C NMR (DMSO-*d*₆): δ = 12.8 [C(2)*C*H₃], 23.5 [C(3)*C*H₃], 26.2 [C(3)*C*H₃], 32.1 [N(1)*C*H₃], 42.6 [C(3)], 70.7 [C(2)], 101.4 [C(9)], 110.0 [$^{3}J_{CF}$ = 4.2, C(6)], 115.3 [C(4)], 115.7 [C(4a)], 124.4 ($^{1}J_{CF}$ = 273.7, *C*F₃), 127.7 [C(3'-Thio)], 129.1 [*C*(4'-Thio)], 130.2 [*C*(5'-Thio)], 133.3 [$^{2}J_{CF}$ = 30.5, *C*(5)], 144.8 [*C*(2'-Thio)], 145.3 [*C*(3a)], 150.6 [*C*(7)], 151.4 [*C*(8a)], 154.0 [*C*(9a)].

¹⁹F NMR (DMSO): δ = -62.5.

MS (EI): *m*/*z* (%) = 376 (M⁺, 49), 361 (100), 346 (49), 331 (6), 188 (5), 180 (9), 173 (18).

Compound 25b

R_f (EtOAc–cyclohexane, 1:1) 0.79.

¹³C NMR (DMSO-*d*₆): δ = 12.9 [C(2)*C*H₃], 23.4 [C(3)*C*H₃], 26.4 [C(3)*C*H₃], 31.8 [N(1)*C*H₃], 43.1 [C(3)], 70.5 [C(2)], 100.8 [C(9)], 108.9 [C(6)], 115.2 [C(4)], 118.4 [C(4a)], 121.8 (¹*J*_{CF} = 275.9, CF₃), 123.7 (¹*J*_{CF} = 276.4, CF₃), 134.1 [²*J*_{CF} = 31.3, C(5)], 145.5 [²*J*_{CF} = 31.3, C(7)] 149.2 [C(3a)], 151.3 [C(8a)], 154.4 [C(9a)].

¹⁹F NMR (DMSO): $\delta = -62.4$ (3 F), -68.8 (3 F).

MS (EI): m/z (%) = 362 (M⁺, 31), 347 (100), 332 (57), 156 (8), 69 (7).

5,7-Dimethoxy-2-(2-thienyl)-4-trifluoromethylquinoline (26)

Compound **26** was prepared from aniline **23** and diketone **2b** using the above procedure for **5** and was purified by column chromatography (silica gel; EtOAc; $R_f 0.76$).

¹³C NMR (CDCl₃): δ = 56.4 (OCH₃), 56.7 (OCH₃), 101.2 [C(6)], 101.9 [C(6)], 111.0 [C(4a)], 114.2 [${}^{3}J_{CF}$ = 7.8, C(3)], 124.1 (${}^{1}J_{CF}$ = 273.5, CF₃), 127.2 [C(3'-Thio)], 128.9 [C(4'-Thio)], 129.9 [C(5'-Thio)], 134.6 [${}^{2}J_{CF}$ = 33.1, C(4)], 144.8 [C(2'-Thio)], 152.9 [C(2)], 153.0 [C(8a)], 156.2 [C(5)], 162.2 [C(7)].

¹⁹F NMR (acetone): $\delta = -60.7$.

MS (EI) *m*/*z* (%) = 339 (M⁺, 100), 310 (20), 296 (12), 281 (15), 266 (11), 253 (16), 108 (10).

3-Methyl-1-phenyl-4-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridin-6-yl Phosphoric Acid Dichloroanhydride (27)

To a pyrazolopyridone **6a** (2.92 g, 10 mmol) was added POCl₃ (4 mL) and the reaction mixture was refluxed for 3 h. The excess of POCl₃ was evaporated in vacuo. The residue was dissolved in a mixture of anhyd toluene (20 mL) and anhyd hexane (10 mL). The solution was filtered under a blanket of anhyd argon to remove the insoluble precipitate, solvents were evaporated in vacuo and the residue was crystallized (anhyd hexane).

3-Methyl-1-phenyl-4-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridin-6-yldiphenylphosphate (28) Mathad via Dichlaraanhydrida 27

Method via Dichloroanhydride 27

To a stirring solution of sodium phenolate (0.566 g, 4.8 mmol) in anhyd dioxane (20 mL) dichloroanhydride **27** (1.00 g, 2.4 mmol) was added. The reaction mixture was maintained at r.t. for 1.5 h and

then was refluxed for 15 min. Dioxane was evaporated in vacuo, the residue was triturated with H_2O and crystallized (2-propyl alcohol).

Method via Phosphorylation of Pyrazolopyridone 6a

Compound **28** was prepared from pyrazolopyridone **6a** and $(PhO)_2POCl$ using the below procedure for **29**.

Yield: 71%.

3-Methyl-6-(4-methylphenylsulfonyloxy)-1-phenyl-4-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridine (29)

To a solution of pyrazolopyridone **6a** (2.92 g, 10 mmol) and Et_3N (1.4 mL, 10 mmol) in dioxane (20 mL), tosyl chloride (1.91 g, 10 mmol) was added. The reaction mixture was refluxed 8 h, then dioxane was evaporated in vacuo, and the residue was triturated with H_2O and washed with MeOH (5 mL).

3-Methyl-6-morpholino-1-phenyl-4-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridine (30b)

Method via Dichloroanhydride 27

To a pyrazolopyridone **6a** (0.5 g, 1.71 mmol) was added POCl₃ (2 mL) and reaction mixture was refluxed for 3 h. The excess of POCl₃ was evaporated in vacuo. To the residue was added morpholine (3 mL) and the mixture was refluxed for 4 h, then the excess of morpholine was evaporated in vacuo, the residue was triturated with H_2O and crystallized (2-propyl alcohol).

Yield: 0.245 g (39%).

6-(*N*-**R**,*N*'-**A**'-**A**mino)-3-methyl-1-phenyl-4-trifluoromethyl-1*H*-pyrazolo[3,4-*b*]pyridines (30); Typical Procedure

To a solution of tosylate **29** (0.45 g, 1.0 mmol) in dioxane (10 mL), the appropriate amine (2.5 mmol) was added. The reaction mixture was refluxed 2–4 h [the reaction was monitored by TLC (silica gel; EtOAc)]. Dioxane was evaporated in vacuo, and the residue was triturated with H₂O and crystallized from an appropriate solvent: **30** a,b, *i*-PrOH; **30 d,f**, MeOH; **30e**, mixture of *i*-PrOH–heptane ca. 10: 1.

Exeption: the substunce **30c** was purified by the following procedure. The crude product was placed on a short silica gel column and washed with EtOAc to wash out the by-products and then washed with MeOH to afford the target product.

Compound 30a

MS (EI): m/z (%) = 360 (M⁺, 100), 345 (12), 331 (54), 317 (24), 304 (45), 292 (24), 277 (22), 251 (9), 236 (6), 180 (8), 84 (21), 77 (28).

Compound 30c

MS (EI): *m*/*z* (%) = 375 (M⁺, 22), 318 (11), 305 (100), 83 (19), 77 (20), 70 (51), 43 (24).

2-Carbomethoxy-4-trifluoromethylthieno[2,3-*b*]pyridin-6-yl Dimethylphosphate (32)

To a thienopyridone **18** (2.77 g, 10 mmol) was added POCl₃ (4 mL) and reaction mixture was refluxed 3 h. The excess of POCl₃ was evaporated in vacuo. To the residue anhyd benzene (20 mL) was added. The solution was filtered under anhyd argon to remove the insoluble precipitate. To the stirred filtrate, Et₃N (4 mL, 29 mmol) and anhyd MeOH (1 mL, 31 mmol) were added. The reaction mixture was maintained at r.t. for 1.5 h, and then was refluxed for 15 min. The precipitate of Et₃N·HCl formed was filtered off. The filtrate was concentrated in vacuo and the residue was crystallized (MeOH).

2-Carbomethoxy-6-(4-methylphenylsulfonyloxy)-4-trifluoromethylthieno[2,3-*b*]pyridine (33)

To a solution of thienopyridone **18** (2.77 g, 10 mmol) and Et_3N (1.4 mL, 10 mmol) in dioxane (20 mL), tosyl chloride (1.91 g, 10 mmol)

was added. The reaction mixture was refluxed 16 h, then the dioxane was evaporated in vacuo, the residue was triturated with $\rm H_2O$ and crystallized (MeOH).

6-(*N*-**R**,*N*'-**A**'-Amino)-2-carbomethoxy-4-trifluoromethylthieno[2,3-*b*]pyridine (34); Typical Procedure

To a solution of tosylate **33** (0.43 g, 1.0 mmol) in dioxane (10 mL) an appropriate amine (1.3 mmol) and *i*-Pr₂NEt (0.70 mL, 4 mmol) were added. The reaction mixture was refluxed 4–8 h (the reaction mixture was monitored by TLC (silica gel; EtOAc). Dioxane was evaporated in vacuo, the residue was triturated with H₂O and crystallized from an appropriate solvent: **34** a,d,e, *i*-PrOH; **34b**, MeOH; **34c**, mixture of *i*-PrOH–heptane ca. 10:3.

Compound 34a

MS (EI): m/z (%) = 344 (M⁺, 100), 329 (11), 315 (49), 301 (40), 288 (41), 276 (30), 261 (42), 245 (11), 230 (21), 182 (8), 84 (23), 41 (10).

Acknowledgment

The authors acknowledge Enamine Ltd. for financial support of this work. Also we officially thank Turov A. V. (Department of Chemistry of Kyiv National Taras Shevchenko University) and Kuzmenko Yu. V. (Central Customs Laboratory of National Customs Service of Ukraine) for spectral measurement.

References

- (a) Filler, R. In *Flourine Containing Drugs in* Organoflourine Chemicals and Their Industrial Application, Chap. 6; Pergamon: New York, **1979**. (b) Holland, G. F.; Pereira, J. N. J. Med. Chem. **1967**, 10, 149.
- (2) (a) Rempfler, H.; Duerr, D. EP 337944, **1989**; Chem. Abstr. 1990, 112, 139043r. (b) Rempfler, H.; Duerr, D.; Thummel, R. C. EP 337943, **1989**; *Chem. Abstr.* **1990**, *112*, 139044s. (c) Kawasaki, H.; Ozawa, K.; Yamamoto, K. WO 0198301, **2001**; *Chem. Abstr.* **2001**, *136*, 69807. (d) Grutzmann, R.; Muller, U.; Bischoff, H.; Zaiss, S. WO 0197787, **2001**; *Chem. Abstr.* **2001**, *136*, 64132. (e) Strobel, H.; Wohlfart, P.; Safarova, A.; Walser, A.; Suzuki, T.; Dharanipragada, R. M. WO 0264545, **2002**; *Chem. Abstr.* **2002**, *137*, 185515. (f) Yoshimi, K.; Kozuka, M.; Sakai, J.; Iizawa, T.; Shimizu, Y.; Kaneko, I.; Kojima, K.; Iwata, N. *Jpn. J. Pharmacol.* **2002**, *88*, 174; *Chem. Abstr.* **2002**, *137*, 15686.
- (3) (a) Denisova, A. B.; Sosnovskikh, V. Ya.; Dehaen, W.; Toppet, S.; Meervelt, L. V.; Bakulev, V. A. J. Flourine Chem. 2002, 115, 183. (b) Song, L. P.; Zhu, S. Z. J. Flourine Chem. 2001, 111, 201; and references cited therein. (c) Ohkura, H.; Berbasov, D. O.; Soloshonok, V. A. Tetrahedron Lett. 2003, 44, 2417.
- (4) (a) Bonacorso, H. G.; Duarte, S. H. G.; Zanatta, N.; Martins, M. A. P. Synthesis 2002, 1037. (b) Bonacorso, H. G.; Watowski, A. D.; Muniz, M. N.; Zanatta, N.; Martins, M. A. P. Synthesis 2002, 1079. (c) Martins, M. A. P.; Sinhorin, A. P.; Da Rosa, A.; Flores, A. F. C.; Wastowski, A. D.; Pereira, C. M. P.; Flores, D. S.; Beck, P.; Freitag, R. A.; Brondani, S.; Cunico, W.; Bonacorso, H. G. Synthesis 2002, 2353.
- (5) (a) Krasovsky, A. L.; Moiseev, A. M.; Nenajdenko, V. G.; Balenkova, E. S. *Synthesis* **2002**, 901. (b) Krasovsky, A. L.; Hartuluari, A. S.; Nenajdenko, V. G.; Balenkova, E. S. *Synthesis* **2002**, 133.
- (6) (a) Pushechnikov, A. O.; Volochnyuk, D. M.; Tolmachev, A. A. Synlett 2002, 1040. (b) Volochnyuk, D. M.; Kostyuk, A. N.; Pinchuk, A. N.; Tolmachev, A. A. Tetrahedron Lett. 2003, 44, 391.

- (7) (a) Volochnyuk, D. M.; Pushechnikov, A. O.; Krotko, D. G.; Koydan, G. N.; Marchenko, A. P.; Chernega, A. N.; Pinchuk, A. M.; Tolmachev, A. A. Synthesis 2003, 906.
 (b) Tolmachev, A. A.; Dovgopoly, S. I.; Kostyuk, A. N.; Kozlov, E. S.; Pushechnikov, A. O.; Holzer, W. Heteroat. Chem. 1999, 10, 391. (c) Kovaleva, S. A.; Chubaruk, N. G.; Tolmachev, A. A.; Pinchuk, A. M. Khim. Geterotsikl. Soed. 2001, 1287; Chem. Abstr. 2002, 137, 47274. (d) Oshovsky, G. V.; Pinchuk, A. M.; Tolmachev, A. A. Mendeleev Commun. 1999, 9, 161. (e) Kovaleva, S. A.; Ivonin, S. P.; Pinchuk, A. M.; Tolmachev, A. A. Khim. Geterotsikl. Soed. 2001, 1285; Chem. Abstr. 2002, 137, 47273.
- (8) (a) Suzuki, M.; Iwasaki, H.; Fujikawa, Y.; Sakashita, M.; Kitahara, M.; Sakoda, R. *Bioorg. Med. Chem. Lett.* 2001, *11*, 1285. (b) Bondavalli, F.; Botta, M.; Bruno, O.; Ciacci, A.; Corelli, F.; Fossa, P.; Lucacchini, A.; Manetti, F.; Martini, C.; Menozzi, G.; Mosti, L.; Ranise, A.; Schenone, S.; Tafi, A.; Trincavelli, M. L. *J. Med. Chem.* 2002, *45*, 4875. (c) Straub, A.; Stasch, J.-P.; Alonso-Alija, C.; Benet-Buchholz, J.; Ducke, B.; Feurer, A.; Fuerstner, C. *Bioorg. Med. Chem. Lett.* 2001, *11*, 781. (d) Shutske, G. M.; Roehr, J. E. *J. Heterocycl. Chem.* 1997, *34*, 789.
- (9) Balicki, R. Pol. J. Chem. 1983, 57, 789.
- (10) Linderman, R. J.; Kirollos, K. S. *Tetrahedron Lett.* **1990**, *31*, 2689.
- (11) For distant spin-spin H–F interaction see: Ionin, B. I.; Yershov, B. A.; Kol'tsov, A. I. NMR-Spectroscopy in Organic Chemistry, 2nd ed.; Yershov, B. A., Ed.; Leningrad: Khimiya, 1983.
- (12) (a) Lynch, B. M.; Khan, M. A.; Teo, H. C.; Pedrotti, F. *Can. J. Chem.* **1988**, *66*, 420. (b) Emerson, W. S.; Holly, F. W.; Klemm, L. H. *J. Am. Chem. Soc.* **1941**, *63*, 2569.

- (13) (a) Hamann, L. G.; Kong, J.; Edwards, J. P. WO 0116133,
 2001; Chem. Abstr. 2001, 134, 222698. (b) Kong, J. W.;
 Hamann, L. G.; Ruppar, D. A.; Edwards, J. P.; Marschke, K. B.; Jones, T. K. Bioorg. Med. Chem. Lett. 2000, 10, 411.
 (c) Zhi, L.; Van Oeveren, C. A.; Chen, J.-H.; Higuchi, R. I. WO 0266475, 2002; Chem. Abstr. 2002, 137, 201294.
 (d) Hamann, L. G.; Mani, N. S.; Davis, R. L.; Wang, X.-N.;
 Marschke, K. B.; Jones, T. K. J. Med. Chem. 1999, 42, 210.
- (14) Pushechnikov, A. O.; Krotko, D. G.; Volochnyuk, D. M.; Tolmachev, A. A. Synlett 2001, 6, 860.
- (15) Chandra Sheker Reddy, A.; Narsian, B.; Venkataratman, R. V. J. J. Flourine Chem. 1997, 86, 127; and references cited therein.
- (16) (a) Arutyunnyan, E. A.; Gunar, V. I.; Gracheva, E. P.;
 Zav'yalov, S. I. *Izv. Akad. Nauk USSR, Ser. Khim.* 1968, 445; *Chem. Abstr.* 1968, 69, 86943u. (b) Rosowsky, A.;
 Papathanasopoulos, N. J. *Heterocycl. Chem.* 1972, 9, 1235.
- (17) (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Manna, F.; Pace, P. Synlett 1998, 4, 446. (b) Cacchi, S.; Carangio, A.; Fabrizi, G.; Moro, L.; Pace, P. Synlett 1997, 12, 1400. (c) Hinkle, J. S.; Lever, O. W. Tetrahedron 1988, 44, 3391.
- (18) Grandberg, I. I.; Ting, W.-P.; Kost, A. N. Zh. Obshich. Khim. 1961, 31, 2311; Chem. Abstr. 1962, 56, 25079.
- (19) Abushanab, E.; Lee, D. Y.; Goodman, L. J. Heterocycl. Chem. 1973, 10, 181.
- (20) Traube, W. Chem. Ber. 1900, 33, 1381.
- (21) Dann, O. Chem. Ber. 1943, 76, 419.
- (22) Tolmachev, A. A.; Tolmacheva, V. S.; Shevchuk, L. I.;
 Kozlov, E. S.; Babichev, F. S. *Khim. Geterotsikl. Soed.* 1989, 919; *Chem. Abstr.* 1990, 112, 35624.