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Various growth characteristics of Streptomyces ooelioolor
are consldered and numerous relations among them are disoussed.
An attempt 1s made to tie the events at the hyphal level to an
‘understanding of phenomena at the organism level. The results
are presented as corollaries of a theoretical model based on
a speclal stochastic branching process involving apices of
three types. Theoretical conclusions are compared to the expe-
rimental data on growth and branching of colonles of S.coell-
oolor from paper 1 il.

The results oz %hia communication may be easily carried
over to any mycelial organism.
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The authors of paper [q showed that growth kinetics of the
filamentous actinomyoete Streptomyces coelicolor were similar
to those of filementous fungi. This fact allows to describe
the early growth of this actinomycete by means of branching
processes‘4,5]" in the manner as it was done when modelling
the growth of fungal mycelium [6-9].

The present communication is a conclse mathematical commen-
tary on a prominent experimental work by E.Allan and J.Prosser
[1] devoted to the study of growth and branching of S.coellco-
lor A3(2).

Before proceeding to discussion of gquantitative regulari-
ties of growth of S. coelicolor, we shall retell some facts
from D].

Similarly to the filamentous fungi, the filamentous strepto~
mycete S. coelicolor A3(2) grown on solid medium eventually
forms a circular colony. The development of S. coelicolor
usually involves the outgrowth of more than one germ tube
(at most four germ tubes were observed). The formation of a
circular colony with hyphae radiating outwards from the spore
is associated with the establishment of a ceaseless hyphal
interaction in the growth zone Eu}. The hyphae of S. coelicolor
only occasionally crossed over each other. On the occasions
when a branch tip almost touched another branch the growth of
that tip would stop. Cessation of growth also resulted from
growth into crowded areas. The partions of branches which stop-
ped growing in a large colony were 47 %, 60 % and 44 % for
primary, secondary and tertiary branches respectively.

Fig. 1 represents the plots describing the development of
one mycelial tree within the large colony mentioned above,
which produced three germ tubes. About 8 hours after spore
germination the total mycelial length and the total number of
apices started increasing exponentially at the specific rates
of 0.26 + 0.002 and 0.25 + 0.001 h"1 respectively. The mean
hyphal growth unit for 12 mycelial trees was 32.63 + 1.60 pm.

Fig. 2 represents frequency distribution of 200 internode
lengths with the mean of 9.91 + 0.52 um. The mean length for,
150 apical segments (that is, the segments of parent hyphae
from apex to the nearest branch) was 35.2 + 1.12 pm. The mean
extension rate of hyphae varied from 10.8 + 0.6 to 17.8 +
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Fig. 1. Total mycelial length A(t) (o) , number of tips
E(t) (o) and their ratio HGQU(t) (@) in a developing

mycelium of S. coelicolor on minimal medium (re-
drawmn from [1] ).

1.4 um b~71,

All measurements are given as a mean value + standard
error.

Now we proceed to the mathematical analysis of the above
growth characteristics of S. coelicolor.

Denote by d(l) eana D()= j: Cl(u)dli the distribution

density and the distribution function for lengths of internodes
on a single hypha., Assign to each internode of
length A its formation time T = a;v. ,
where v. 18 a model parameter to be specified below. The di-
stributf%n function snd the distribution density of the random
varieble T are of the form

FA) =Dv, D), fity = v, d(v,t) . 32
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Fig. 2. Prequency distribution of internode lengths
in colonies of S. coelicolor (redrawn from [1] )
and approximating density

d(D) =0.04lexp(-0.21).

Aplces of a growing colony are classified under three ty-
pes. Aplces of the extending parent hyphae refer to type T;
and those of the young extending hyphae without laterals,
to type T} (see Fig. 4). The authors of paper £1] indicate that
some hyphae stop growing under unfavourable conditions. The api-
ces of nonextending hyphae refer to type 1. . As defined abo-
ve, an aplcal segment is the segment of a h;pha from its tip
to the nearest node. The type of an apical segment is the same
as the type of 1ts apex.

Denote by £.(t) the number of apices of type 1. , i=
1, 2, 3, in a cofony at moment { . For any fixed value of 1
gi(t)A is a random variable, while with increasing t it beco-
mes a stochastic process. Introduce £(t)=§€ (D)+£ (L)+£ (1)
to denote the total number of tips in the colony. ;(t) is
a gtochastic branching process with the followilng 'apex produ- .
ction [4, 5] : each apex of type 1; or ‘rz exlsts a random
time T distributed with density  f(f) of form (1) and upon
the lapse of that time produces with probability P one
apex of type T; and one apex of type 1j2 (i.e., there
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Fig. 3. Prequency distribution of lengths of the type T
apical segments in colonies of S. coelicolor
(redrawn from [1] ) end theoretical distribution

3:" T, (1) = 0.0s7(Le2ts)exp(-02l) +0.01(L- 12.22)exp(- 0.071) .

appear a lateral branch of type T} and an internode of
length A::vit' while the parent hypha continues elongeting)
and with complementary probability q =1-p , one apex of ty-
pe 1; (i.e., the hypha siops growing). The apices of type 1;
produce no offspring and do not vanish. The process g(t) 1is
initiated at time t°= 0 with one apex of type T; (the germ
tube apex). Apex production in the branching process §(t)
is schematically presented in Fig. 4. The letters over arrows
denote probabilities of the corresponding forms of apex produ-
ction.
Denote by Ai(t), t=1, 2, 3, tho mean number of the type

T; epices in a colony at moment 1 , that is, Ai(t)=

E 5;(t)' where [ is the symbol of mathematicel expectetion,
and put A(t)=E&)= A +A, QL) +A(t). Functions A.(t) sa-
tisfy the following renewal equetions [4,5}: :

ALD = 1= (e F +p [ F(t-w) fruydu +



*ij: A(t-wfandu;
A = pFH = p [ Fet-wyfandu +
s2p (A ct-wy faodu (2)

A= qF(D +2p (" A, (t-wydu .

It follows from these equations that the mean numbers of api-
cea of types T} 5 T; and 1; as well as the mean number

of all apices in &  colony increase asymptotically exponen-

tially at the same specific growth rate o [4,5] « More pre-
cisely, for t —= oo

at ) at
ADO~Ae |, t=1,2,3 end A(t) ~ Ae |, ()
where o 1a the maximum real root of the equation
~ 0o -su . 4
f(s)=8 fwe du=-+ (4)
(] “p
and
i e 3 1-p " 1
T aa 7 sy N — F = T T — ‘
1 2 8aP~ f(“) 3 lldPl f ) ) lIﬂPtI(dx) (5)

(here and further on a prime means differentiation). In the
context of this communication mathematical idealization 'for
t—=oo' should be understood as 'for sufficlently large
number of apices| . Fig. 1 presents a plot of increase of the
total number of apices in the colony of S. coelicolor A3(2).
As 19 seen in this figure, for 8. coelicolor relations (3)
hold true with a satisfactory accuracy from the moment there
appear about 7 to 10 apices, that 1s, 8 to 10 hours after aspo-
re germination.

In order to proceed from the number of aplices in a colony
to the total length of hyphae, we must introduce the rates V,
and V, of movement of the type 'T; and type T; aplces. The
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mean rate of movement of a s 1 ngle apex in a colony
1s random and equal to

Vo E,(1) + va ,(1)
£ i

As t—>00 the mean rate V(t) attains a constant value [4,5] -
equal to

v(t) =

(6)

Agvy + A, (2p-1LV. + V)

A 2p

(7

The mean rate V defined by relation (7) is equal to the
aotual mean extension rate of a s 1in g1le hypha and coin-
cldes with that computed by Trinoci's formula (1) from D(ﬂ.

The total length of hyphae in a colony at moment t+ is
described by the stochastic process

t
AD = Y, St gandu + v, [T g cnde
6 Ju

For the mean value of this process at moment t the following
relations may be derived:

t t A
L) = MA) =V, So Acodu + v, SOAz(u)du ~ —e

t—- o0

at

’

(8)

where ot, A and V are given by formulas (4), (5) and (7).
Comparing (3) to (8) shows that on the average the total
number of apices In g colony and the total length of
hyphae increase at the same specific growth rate. This fact
was established earlier experimentally and .caused introduction
of the hyphal growth unit into mycological investigations 51].
Proceed now to the study of the hyphal growth unit by
means of the theory of stochastic processes. To that end
introduce into consideration stochastic process }{Gll(t) =
A()/&E(t) equal to the ratio of the (random) total length
of hyphae to the (random) total number of apices in a colony
at moment t . It follows from paper [12] and relations
(5) and (8) that the process HGUQ) which haes a random nature
for small numbers of apicba becomes stable in the course of
time and qual to the constant
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Fig. 4. Schematic illustration of apex production in the
branching process &€(t) : T4 - formation time
of the first internode on the germ tubg, T - for-
mation time of the last internode on the hypha
under consideration.



HGU = uum ——=—=— | (9)
bl o

Thus, staebilization of the stochastic process HGU(t) at the
level of HGU and relation (9) for HGU are fundamental proper-
ties of mycelial organisms [jo]. The stochastic process HGU(LY
attains a constant value shortly after spore germination. Accor-
ding to Fig. 1 in case of S. coelicolor HGU(t) beoomesa ti-
me-invariant from the moment there sre about 8 to 10 apices in
the colony.

At the beginning of this communication we defined the di-
stribution density for the internode lengths ona s ingle
h'y ph a. Let us turn now to the distribution of internode
lengths w 1 t h i n a c 0ol omny. The density of this

»,
distribution will be denoted by d (1) . For this reason
congider function S (t,U) equal to the mean number of interno-
des 1n a colony at moment T whose formation time

is less than W . This function satisfies the following rene-

wal equation: SCt.u)= PF(t) X{tsu}+ PF(u)X{t >u}+

+2p S: 5‘(t—w,u.)f(w)dw . (10)

where X{X} is the indicator of the set X. It follows from
equation (10) that for t — oo
at £t _ — oW ]
e Joiwe aw
x
S(tw ~ ~

g 1"
2 o T (a) ()
According to the results of paper [12] the probability to en-
counter an internode i n a ¢colony whose formation
time is less than uy is equal to

S-(t ,u)

N Tl (12)
= w) e w
ACH) 2"30 £

*
F = tum

t —» 0o

as T —» oo . Clearly, this probability does not coinclde with
the probability Fcu) to encounter an internode on a & in -
€le hyph awhose formation time is less then W,

10



Therefore, the probability D”(l) to encounter an interno-
de 1In a colony of length less than | differs
from the probability to encounter such an internode o n a
single hypha. To be more specific,

DY) = FI,) . (13)

Formulas (1), (12) and (13) yield the following expressions
for the corresponding densities: 5=

¥
" —au
f(u) = —d-Ed_u(-u_)— = ZPf(Ll)e % 5 (14)
oo dDO _ dFT(Lv)
d(V=—7 = 1 =

Bn s ~al
=T— /vy e i = 2pdle bl ()
The next formula which is used below deserves a special atten-
tion:
) ¥ LU
A L"zu) e . . (16)

Fig. 2 represents frequency distribution of internode
lengths i n colonies of S. coelicolor redrawn from
paper [f]. This experimental distribution 1s well approximated
by the density of gamma-distribution of the form

a"t""!  -a :
. - — (17)
d (1) oo ©

with K=2 and a=0.2.The curve of this density for the speci-
fied values of K and a 1is plotted in Fig. 2. In oase of
distribution (17) the mean internode length in a colo =
ny 1is equal to

="a . (18a)

and standard deviation is

* [ (18b)

The above-mentioned estimates of the -shape parameter, «,
and the scale parameter, a , are in full agreement with the

11



N .
mean’ internode length L intnd = 9.97 pm and stendard error

6"/\/-'{ = 0,52 pm (n = 200) specified in paper [1] Really,
in case of gamma-distribution (17)

/ * A
' Ifi.u.tnd. * K
K=(——-—G;— = 182 , lht“d=T=10}lm

and, finally, 6%vVn = VK /(a¥n ) - 0.5 pm
It follows from (4), (16) and (17) that the formation ti-
mes of internodes o n a single hypha are di-

gtributed with the density P

1 v L4
TREYE o -uv?(?.p) t
f(t)—- ){av 2p) } t e , (9
while the.specific growth rate 1s equal t%
o = av, {1-(2p) “} ) (20)
Then according to (1) 1
1 K =
\ P { 2 \'T \ lx-1 —a(2p) 1
=== a(2p e (21)
d( Teo i } 3 ’
whence the mean internode length on a single
h y pha 1s equal to 1
)i = (22)
intnd (2 P L wntnd °

Now we turn to the distribution of length of the type T}
aploal segments in colonles. Denote by VV(t,u) the mean number
of the aplcal segments of type 7; or T; in a colony at mo-
ment t , which have appeared after the moment T-u. This
function satisfies the renewal equation

Wt,uy = [1- FO] X {t 2 u) + (23)

+2p S: W(t-w, u)f(w)dw .

12



As t—-—-m

at (Y =
W(t,u) ~ - . Io K -‘F(w)]e

- z
2p fw < (28)
According to the results of paper [12] the probability to enco-
unter an extending aplical segment in a colony, which has appeared
after the moment t-u , 1s equal to
B i W(t w ._ ZOLP £ (25)
o t -—:r(: A +AD) Zc(fi -1 j L1 F(W),I " dw

a8 t — oo . Therefore, the length of the type T1 aplical
segments 1s distributed in colonles with the density

. dB(l/v)
s e i
Iope 7, ai s
_ 2epl1-F(U)] e ‘ (26)
vw(2p-1)

and the mean

¥ w

L =S ug Py, e
ape T, (] g"?‘ T (), =
Va & Yy lin’tud
- Vz(ZP‘D

27)

Proceed now to the length of the type Tz, aplical segments.
When t—»o00 , 1t 1s distributed so as the random variable

l v

&
N I TS
V "1/ T A :
where M has the density 5...¢T(l) and A | the density

d7(1)" , that 1s, with the density

and the mean

13



L R ! (2p - v, - 2pv, ¥

ape T, o v, ( 20 - 1) intnd

29)

The mean length of the type T} aplcal segments in a colo-
ny, that 1s, of the apical segments which stopped extending,
is
* v *
1
= — 4 (30)
ape T3 vV, l intnd
According to relations (3) and (5) the probabilities to

encounter aplcal segments of types T} P 1; or T; in a colony
are

(2p- Df2p), @p-D/zp eana  g/p

respectively. Hence the mean length of all the aplcal segments
in a colony, that 1s, of the apical segments of all three ty-
pes, 1s equal to

» 2P-—1 * ¥
L = ( - ) 1
ape 2p \lapeT ¥ L T, ) T . T,
. . (31)
ok “ intnd

Taking into account relation (28) we receive from (31) the follo-
wing fasclnating equality

HeU= 1"+ : (32)

apc enind

This equality asserts that the hyphal growth unit is equal to
the sum of the mean length of aplcal segments and that of inter-
nodes 1n an entire colony (not only on a single hypha ).

Thus, the growth kinetics of colonies of S. coelicolor are
described by formulas (3), (§5), (7) - (9), (18), (19), (21),
(23), (27) - (32). All these formulas are asymptotic and orien-
ted towards the colonles in steady exponential growth, when the

growth characteristics such as v , HGU , l"‘..t"d o e ol

14



» Ly *
{ ape T, i il et e and | ape  BT€ stable and do not

change with time. Xfter the exponential stage the hyphal growth
unit, HGQU , and the mean marginal internode length, lfut;d i
start increasing [2], [j], [ﬁa « From that moment on the‘mo-
del presented in this communication becomes unfit and the other
models similar to that which was used in [ﬁ] for modelling
the second stage of growth of the fungal colonies are needede.
It follows from what was said above that the proposed model
may be applied only at the time interval, when the mean exten-
gion rate and the mean internode length are time-invariant.

Any five independent growth parameters may serve as the

input data of the model, for instance a, « s Pa X, and
1'¢°t T, * The parameters of gamma-distribution (17) were discug-
sed above. They are K = 2 and a= 0.2. The value of can

be estimated from the percentage of the apical segments which
gtopped extending [ﬁ] and the theoretical probability to
encounter a type T} apex in a colony equal to q/p . This
yields p=0.7. Relation (20) allows to calculate v, =
8.4 pm h~7, Prom equation (29) Vv =31.83 pm B By formula
(7) v =11.5 pm b1,

To determine the mean rate of hyphal extension, vy ,
entering into relation (9), Trineci [10] used the following
formula

2[Act+ 1 - at]
E = —_— (33)
£+ + D)

which 1ls of prime practical significance. The right-hand side of
(33) becomes equal within short time to the constant very close
to the mean rate, v , defined through formula (7). In case
of colonies of S. coelicolor for which X=0,26 h_1 the abo-
ve-mentioned constant equals 0,99 yv . The mean extension rate,
V=11.5 um h_1, calculated by formula (7) is close to-that’
which is obtained by formula (33) from the plots presented in
Fig. 1.

Formula (9) yields HGQU = 44.2 pm versus 32.63 pm speci-
fied in paper iil « To our mind, this minor discord occurred
due to the diff;rgnt procedures of calculating the hyphal
growth unit. Allan and Prosser [1] averaged the values of

15



HGU . ~“er 12 mycelial trees, while we were reasoning in such
a way as if the total mycelial length in all the 12 trees were
first computed and then divided by the total number of apices in
them. The latter procedure egrees with that used by Allan and
Prosser in [11 to calculate the mean internode length and
the mean length of the type 'Fz apical segments.

The length distribution density of the type 1: apical seg-
ments in colonies of S. coelicolor calculated from equations
(16), (17), (26), and (28) is of the form

ﬂ* L. (1) =0.057(l+ 21.5)exp(-0.21) +
'aFc |z

+0.01(l - 12.22) exp(-0.071).

The curve of this density is presented in Fig. 3.

Thus, due to the introduction of a special branching
process it has become possible to view various kinetic regula-
rities of the early growth of colonies of S. coelicolor from
the unified theoretical standpoint and to achieve a fairly
high accuracy of agreement of theory with factual data.. To
conclude with, we would like to stress that the introduction of
stochastic branching processes into the research of the mycelial
growth offers ample scope for new ideas and experiments. The
main difficulty which arises on this way is that such synthe-
8is of experimental experience with probabilistic reasoning
demands equal skilfulness in biology and probability theory,
which becomes characteristic of modern science and which can be
brought about nowadays only through tight contacts of specia-
lists in relevant spheres of knowledge.

The authors are idebted to R.V.Boiko, V.M.Shurenkov,
S.V.Reshetnikov, and I.P.Sirenko for useful discussion. Techni-
cal assistance of N.G.Terentyeva -in calculations on computer
is also gratefully acknowledged.
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