
Ukrainian Mathematical  Journal, VoL 51, No. 5, 1999 

A NEW METHOD FOR THE CONSTRUCTION OF SOLUTIONS 
OF NONLINEAR WAVE EQUATIONS 

A. F. B a r a n n i k  ~ and  I.  I. Yur ik  2 UDC 517.9:519.46 

We propose a simple new method for the construction of solutions of multidimensional nonlinear wave 
equations. 

1. Introduction 

One efficient method for the construction of  solutions of  nonlinear equations of  mathematical  physics is the 

method of  symmetry  reduction to equations with a smaller number of  variables, in particular, to ordinary differential 

equations [1-3]. This method is based on the investigation of the subgroup structure of  the invariance group of  the 

given differential equation. The solutions thus obtained are invariant with respect  to a subgroup of the invariance 

group of the equation. It should be noted that the invariance imposes very strict restrictions on solutions. Therefore,  

in many  cases, the symmetry  reduction does not allow one to obtain sufficiently broad classes of  solutions. 

In [3-9], the idea of  conditional invariance of differential equations was proposed.  The conditional invariance 

is understood as the symmetry  of  a certain subset of  solutions. Many important nonlinear equations of  mathematical  

physics have subsets of  solutions whose symmetry substantially differs f rom that o f  the entire set of  solutions. Such 

subsets are usually specified by additional conditions, which are certain partial differential equations. The explicit  

description of  these additional conditions is a complicated problem and, unfortunately,  there are no efficient meth-  

ods for its solution. 
In the present paper, we suggest a constructive method for finding certain classes of  exact solutions of  multidi- 

mensional nonlinear wave equations. The idea of the method is as follows: Consider  a partial differential equation 

F ( x , u , u  . . . . .  u )  = O, 
I 2 

(1) 

where u = u (x),  x = (x 0, x 1 . . . . .  xn) ~ Rl, n, and u is the collection of  all possible  mth-order  derivatives. W e  

assume that Eq. (1) has a nontrivial symmetry algebra. To construct solutions o f  Eq. (1), we use a symmetry  (or  

condit ional-symmetry) ansatz [3]. We assume that it has the form 

u = f ( x )  tp(t.o I . . . . .  o)~) + g ( x ) ,  (2) 

where co 1 = f.Ol(X 0, x 1 . . . . .  Xk)  . . . . .  O) k = ( t )k(Xo,  X 1 . . . . .  Xk )  are new independent variables. Ansatz (2) selects a 

certain subset S of  the entire set of  solutions of  Eq. (1). Let us construct, if possible,  a new ansatz 

u = f ( x )  tp(t.O! . . . . .  t.Ok, t.ok+ 1 . . . . .  tOL) + g ( x ) ,  (3) 

which is a generalization of  ansatz (2). Here, o~k+ l . . . . .  o~ L are new variables to be determined. We determine the 

variables 03k+ 1 . . . . .  co L f rom the condition that the reduced equation corresponding to ansatz (3) coincides with the 

reduced equation corresponding to ansatz (2). Ansatz (3) selects a subset S l o f  the set of  solutions of  Eq. (1), 
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which is an extension of  the subset S. If the solutions belonging to the subset S are known, then one can construct 

the solutions from the subset S 1. These solutions are constructed as follows: Let u = u ( x ,  C l . . . . .  Ct)  be a 

multiparameter family of solutions of Eq. (1) that have the form (2); here, C 1 . . . . .  Ct are arbitrary constants. Then 

we obtain a more general family of solutions of  Eq. (1) if the constants C i in the solution u = u ( x ,  C l . . . . .  Ct) 

are regarded as arbitrary smooth functions of  cok+l . . . . .  COL. 
We note that the idea of  this method was formulated in [7] and developed in [8, 9]. In order to apply this meth- 

od to finding exact solutions of  nonlinear equations of  mathematical physics, one should use ansatzes (2), an algo- 
rithm for the construction of  which is not indicated in [7]. In the present paper, which is a logical continuation of 
[7-9], the method indicated is realized for the nonlinear d 'Alembert  and eikonal equations as well as for Schr6- 
dinger-type equations. By using the subgroup structure of  the invariance groups of the equations considered 

[10-12], we obtain efficient ansatzes that allow one to construct broad new classes of exact solutions containing ar- 

bitrary functions. 

2. Nonlinear d'Alembert Equation 

We consider a nonlinear Poincar6-invariant d 'Alembert  equation 

F~u + F(u) = 0,  (4) 

where 

["] b/ -- 
~2 u b2U a2U 

a.o ax 2 

and F ( u )  is an arbitrary smooth function. The construction of  exact solutions of  Eq. (4) with various conditions 

imposed on the function F ( u )  is considered in [3, 11-13]. The majority of  these solutions are invariant with re- 
spect to the invariance group of  Eq. (4), i.e., they are Lie solutions. One of  the methods for the construction of  solu- 

tions is the method of symmetry reduction of Eq. (4) to ordinary differential equations. The idea of this method for 

Eq. (4) is as follows. 

Equation (4) is invariant with respect to the Poincar6 algebra A P (1, n) with basiselements 

Joa = XO~a + Xa20, Jab = Xb~a -- Xaab, 

P0 = b0, Pa = ~a, a , b =  1,2 . . . . .  n. 

Let L be an arbitrary subalgebra of rank n of  the algebra A P ( 1 ,  n) .  The subalgebra L has two basic invari- 

ants u and co = co(x o, x z . . . . .  Xn). The ansatz u = ~0(co) that corresponds to the subalgebra L reduces Eq. (4) to 

the ordinary differential equation 

~0(VCO) 2 + +E]CO + F(~p) = 0 ,  (5) 

t.axo) t ax ) ' t a x . j  

Such a reduction (as well as the corresponding ansatz) is called a symmetry reduction. There are eight types of 

nonequivalent subalgebras of  rank n in the algebra A P ( 1 ,  n) [11]. 
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In [14], the following procedure for the reduction of Eq. (4) to ordinary differential equations, which is a gener- 

alization of the method of symmetry reduction, was suggested: By using an ansatz u = ~p(0)), where m = 0)(x) is 

a new variable, Eq. (4) is reduced to an ordinary differential equation if c0(x) satisfies the equations 

DO) = Ft(0)), 

(vm) 2 =  F2(0)). 
(6) 

Here, F 1 and F 2 are arbitrary smooth functions that depend only on m. 

Thus, having constructed all solutions of system (6), one obtains the collection of  variables co for which the 

ansatz u = q~(m) reduces Eq. (4) to an ordinary differential equation for 0`). System (6) is studied in [4, 15]. 
However, it should be noted that the ansatzes obtained from system (6) do not exhaust all ansatzes that reduce 

Eq. (4) to ordinary differential equations. In this connection, we now consider the problem of finding generalized 
ansatzes (3) by using given symmetry ansatzes (2) of Eq. (4). 

2.1, Consider a symmetry ansatz u . . . .  ~p(ml) for Eq. (4), where 0`)1 ( x2 X? . . .  -- X~)9" 1/2, k > 2. This 

ansatz reduces Eq. (4) to the equation 

cPt l +  k q~ + F(~p) = 0, 
0)~1 

(7) 

d2qo dqo 
= - . This ansatz should be regarded as a particular case of  the more general ansatz where q~ll  d--~ml2, % d0)t 

q)(0)l, 0`)2), where o 2 is an unknown variable. The ansatz u = qo(0) t , c02) reduces the equation 

U = 

k 
~11 + - ~ q ) l  + 2(D12(\70)I 'V0)2) + q)2D0)2 + ~022(V0)2) 2 "k- F(q~) = 0, 

ml 
(8) 

g o )  1 - g o )  2 -- 30)1 30`) 2 00) 130`) 2 20.) 1 20`) 2 

~X 0 OX 0 ~X 1 ~X 1 ~X n ~X n 

On Eq. (8), we impose the condition that it should coincide with the reduced equation (7). Under this assump- 
tion, Eq. (8) splits into the following two equations: 

q~ k q~ + F(~o) 0, 
0)'---1 1 = 

(9) 

2(P12(V0) l -g0)2)  + q )22 (V(02 )2+  q)2E]0)2 = 0. (10) 

Equation (10) is satisfied for an arbitrary function ~0 if the variable m 2 is such that 

[--[0.} 2 = 0 ,  (VO)2) 2 = 0 ,  (11)  

V 0 ) l . V 0 )  2 = O. (12) 

Thus, if the variable 0)2 is chosen so that conditions (11) and (12) are satisfied, the multidimensional equation (4) 
reduces to the ordinary differential equation (7), and its solutions give solutions of Eq. (4). The problem of  reduc- 
tion thus turns into the problem of construction of general or partial solutions of system (11), (12). 
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The overdetermined system (11) is studied in detail in [16, 17], where a broad class of  solutions of  system (11) 
is obtained. These solutions are constructed as follows: We consider the linear algebraic equation for the variables 

X o ,  x I . . . . .  x n with coefficients depending on the unknown o)2: 

a0(0)2)x 0 - a l ( o ) e ) X  ~ - . . . -  a n ( 0 ) 2 ) x  n - b(o)e) = 0. (13) 

Let the coefficients of  this equation be analytic functions of 0) 2 satisfying the condition 

[a0(o)2)] 2 -  [al(o)2)]  2 - . . . -  [an(o)2)] 2 = 0. 

Assume that Eq. (13) is solvable with respect to o)2 and the result of  its solution is a certain function 

o)2(x0, x 1 . . . . .  x,,), (14) 

which may be real or complex. Then, function (14) is a solution of system (11). We now select the solutions of (14) 

that have the additional property Vo) l Vo) 2 = 0. It is obvious that 

~o)2 _ a0 am 2 _ a~ 
ax0 8 "  axl - ~ . . . . .  

where 

Since 

we have 

~o)2 _ an 

~X n ~ ' '  

8(m2) = ao(o)2)x 0 - al(m2)Xl - . . . -  a n ( o ) 2 ) x  n - b(o)2) and 8 '  is the derivative of 8 with respect to o)2. 

~o)I _ X0 ~o)I _ Xl ~o)I _ Xn 
, , . , . ~  , 

aX0 o)I OXl CO1 aXn O)I 

Vo) I ' V o )  2 = 
1 

m 1 8" ( a ~ 1 7 6  - a l x l  - " "  - a n x n ) "  

In view of(13),  the equality Vo)j .go) 2 = 0 holds if and only if b(o)2)  = 0. Thus, we have constructed a broad 
class of  ansatzes that reduce the d 'Alembert  equation to ordinary differential equations. The arbitrariness of the 

choice of  the function o)2 may be used to satisfy certain additional conditions. 

= x2~ 1/2 ' 2.2. The symmetry ansatz u = q)(o)l), o)1 ( x 2 + . . . +  / j  L >  1, L < n - 1 ,  

Let  o) 2 be an arbitrary solution of the system of equations 

a2o) a2m a20) 
axg a 2+, = o, 

Oxo) t, OXl.+l; "'" 

The ansatz u = ~0(o) l , 0 2 )  reduces Eq. (4) to the equation 

_ - 0  
 ax.) 

is generalized as follows: 

(15) 
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02qo L - 1 3qo 
+ F(~o) = o. 

3co2 col 3col 

If  L = n - 1, then the ansatz u = (P(col, CO2), 0)2 = X0 --Xn, is a general izat ion o f  the s y m m e t r y  ansatz  u = 

'P(col). 
The ansatzes corresponding to subalgebras  2, 6, and 8 in Table 1 in [9] are particular cases o f  the ansatz con-  

structed above. Similarly,  one can obtain  broad  classes o f  ansatzes that reduce  Eq. (4) to at least two-dimensional  

equations.  Let us now present some o f  them. 

2.3. The ansatz u = ~0(co 1 . . . . .  COL, COL+l), where col = Xl . . . . .  COL = XL, COl~+I is an arbitrary solut ion o f  sys- 

tem (15) and L < n - 1, is a general izat ion o f  the symmet ry  ansatz u = q)(o~ l . . . . .  COL) and reduces  Eq. (4) to the 

equat ion 

O2q~ 32q0 32q0 

030) 2 c)co~ "'" 0co~ + F((p) = 0 .  

2.4. Let  COl=(X?- -  X 2 - - . . . - -  XL) I/2, CO2= . . . .  , COs: XL+s_I, L > 2 ,  L + s - 1  -< n ,  COs+ I be an arbi- 

trary solution o f  the system 

[]cos+l = 0 ,  

Vco i ' v c o s +  1 = 0 ,  

(Vcos+ 1)2 = 0, 

i = 1,2 . . . . .  s. 

(16) 

Then the ansatz u = q~(cot . . . . .  cos, C~ is a general izat ion o f  the s y m m e t r y  ansatz u = ~0(co 1 . . . . .  COs) that re- 

duces Eq. (4) to the equat ion 

L 
q) l l - -  "~-(Pl -- (I)22 - - " ' - -  q)ss + F(q)) = 0. 

o J1 

3. Exact Solutions of the Nonlinear d'Alembert Equation 

Let us construct  some classes o f  exact  solutions of  the equation 

[ ] u  + ~ . u  k = 0, k r  (17) 

Consider  the invariant  solution [ 12] o f  Eq. (17): 

d = C)(x? + . .  + (18) 

a ( k ,  L) = ~.(1 - k) 2 L = 1, 2 . . . . .  n .  
2 ( L  - Lk  + 2k) '  

App ly ing  the group t ransformation to solut ion (18), we obtain the mul t iparameter  family o f  solutions 

u 1-k = r~(k, L) [(x 1 + C1) 2 + . . .  + (X L + CL)2],  
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where  C 1 . . . . .  C L are a rb i t r a ry  constants .  

f ami ly  of  solutions of  Eq. (17): 

/~l -k  ----- 
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Hence,  accord ing  to Sec. 2.3, for L < n - 1 we  obta in  the fo l lowing 

(y(k, L) [(X 1 + hl(O))) 2 + . . .  + (x L + hL(r k ~ L 
L - 2 '  

where  co is an arbi trary so lu t ion  o f  sys tem (15) and h i ( o )  ) . . . . .  hL(r ) are arbitrary twice-di f ferent iable  functions 

o f  0). If, in part icular ,  n = 3 and L = 1, then Eq. (17) has the fo l lowing family of  solutions in the space Rl,3: 

l-k ~,(L - k) 2 
u - [x[ + h1(6o)] 2, k r - 1. 

2(1 + k) 

Consider  the fo l lowing  so lu t ion  [ 12] of  Eq. (17): 

u ~-~ ~ ( k , s ) ( x o  2 - x ~ - . . . -  2 = x s ) ,  s = 2 . . . . .  n ,  (19) 

cy(k,s) = - ~ ' ( 1 - k ) 2  k r  s+___~l 
2 ( s -  ks  + k + 1)'  s -  1" 

Solut ion (19) de te rmines  the mu l t i pa rame te r  family of  solutions 

u '-k = o ( k , s ) [ x ~ - x ? - x ~ - ( x L + ,  +CL+,)2- . . . - (Xs  +C,)2I, 

where  CL+ l . . . . .  Cs are a rb i t ra ry  constants.  Hence,  according to Sec. 2.4, for L > 2 we obta in  the family  of  so- 

lutions 

u '-k = o ( ~ ,  s ) [x0  ~ - ~? - x~ - ( x ~ ,  + h~+,(0~)) 2 - . . . -  ~Xs + h~(o,))~], 

where  co is an arbi trary so lu t ion  o f  sys tem (16) and h t,+ l (m)  . . . . .  h ~ (o)) are arbi trary twice-di f ferent iable  func- 

If, in par t icular ,  L = 2 and s = 3, then Eq. (17) has the fol lowing fami ly  of  solut ions in the space tions o f  0). 

Rl, 3: 

The  equat ion 

l-k ~,(L - k) 2 [x~ - x 2 - x 2 - (x 3 + h3(o)))2], k ;e 2. 
u - 4 ( k -  2) 

U]u + 6u  2 = 0 (20) 

has the solution u = P ( x  3 + C2) ,  where  P ( x  3 + C2) is the Weiers t rass  elliptic funct ion with invariants g l  = 0 

and g3 = Cl.  Then,  acco rd ing  to Sec. 2.3, we obtain the fo l lowing family  of  solutions o f  Eq. (20): 

u = P ( x  3 + h (o ) ) ) .  

Here ,  m is an arbi trary so lu t ion  o f  sys tem (15) and h(co)  is an arbitrary twice-different iable funct ion.  



A NEW METHOD FOR THE CONSTRUCTION OF SOLUTIONS OF NONLINEAR WAVE EQUATIONS 

Consider the particular case of Eq. (17) where k = 3. The ansatz 
reduces Eq. (17) to the equation 

d2~p + 3 dq~ + K~p3 = 0. 
dco 2 co dco 

The exact solutions of Eq. (21) are constructed in [18]. 
Eq. (21): 

u = ~ ( ~ ) ,  

If C l 

655 

co--,o(x? + + xg)l 2 

(21) 

We consider, e.g., the following family of  solutions of 

_~1 tan [+ ~ -  In (C 1 co)) ~ = - a 2 < 0. 
q~ = ao) ~ - a  2 

is an arbitrary twice-differentiable function h 1 (c~ 1 ), where co 1 is an arbitrary solution of the system 

f-]O~ 1 = 0, (VO)I) 2 = 0, 

Vco-Vco 1 = 0, 

(22) 

The generalized ansatz has the form u = cp(co 1 , (02, 0)3), where to 3 is an arbitrary solution of the system 

[5]c03 = 0, Vco3.Veo I = 0, Vco3.Vo~ 2 = 0. (25) 

System (25), in particular, has the solution co 3 = (x 1 - x  4) (x 2 -x3 )  -1 and, therefore, the ansatz u = q~(o~ l , 

o~2, o~3) reduces Eq. (23) to Eq. (24). Equation (24) was studied in detail in [19], where the invariance algebra of 

40)1q)12 + 4(O2q)22 + 8(P2 + ~,(pk = 0. (24) 

of solutions of Eq. (17). 
Consider the d'Alembert equation 

~2u 
+ 

in the pseudo-Euclidean space R2, 2 . 

x 2, reduces Eq. (23) to the equation 

The symmetry ansatz u=q~(cOl,C02), co l = x , - x a ,  o)2= x 2 + x 2 -  x 2 -  

~2 u ~2 u ~2 u 
~x~ Ox~ ~x~ + ~'uk = 0, k ~: 1, (23) 

then we obtain the following family of solutions of  Eq. (17): 

1 ) u = - -  tan ln(hl(~l)co) 
aco ~- a 2 

One more family of  exact solutions of Eq. (17) with k = 3 can be obtained as follows: Applying the group 
transformation to solution (22), we obtain the family of solutions 

-l[x2a +x22 +(x3 + C1)2 -  x~]-I  tan(_+ -~2 In C2 [ X 2 a  +x22 + (x3  -I- CI)2 - x02]). u 

Replacing the constants C 1 and C 2 by arbitrary functions h 1 (~ and h2(o~ l ), we obtain a more general family 
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this equation in the Lie sense was determined and some classes of exact solutions were constructed. We use, e.g., 
the following exact solution of Eq. (24): 

(CO 2 + Clr + C20){-2),  
~, (k - 1) 2 q)l-k ----. 
4 ( k - 2 )  

where C 1 and C 2 are  arbitrary constants. Replacing the constants C l and C 2 

functions h I (r and h2(o}3), we obtain a broad class of solutions of Eq. (23): 
by arbitrary twice-differentiable 

/,/1-k _ ~ ( k  - 1) 2 (x 2 + x 2 _ x32 _ x2 + hl(~3))( 1 + h~2((.03)(Xl_ x4)k_2)" 
4(k - 2) 

4. Exact Solutions of  the Liouville and Sine-Gordon Equations 

Consider the Liouville equation 

[ ] u +  ~,expu = 0. (26) 

The symmetry ansatz u = q)(ml), o.) I - =  X 3, reduces Eq. (26) to the equation 

d2~p ~, exp (p((Ol) 
dco 2 - 

Integrating the last equation, we establish that cp coincides with one of the following functions: 

I n { ( - 2 ~  ) s e c 2 I - - ~ - ~ ( m l  + C2)1},  CI < 0 ,  ~, > O, C2ER, 

ln~" 2C1C2 e x p ( ~ l  ml) 
[~L[I_C2 e x p ( 4 ~ l  m,)] j ,  c t > 0 ,  ~LC 2 > 0 ,  

- l n f ~ / ~ m , +  C) 2. 

Therefore, according to Sec. 2.3, we obtain the following family of solutions of Eq. (26): 

{ ( h ~ )  I hl(~) (x3 + h2(~ hl(f.o) < O, X > O ,  u = In - sec 2 . - x / - Z ~  
2 

hi(m) > 0, )vh2(m) > 0, 
�9 f2  hi(m) he(m) exp ( ~  x3)] 

/A = In . . . .  ~ , 
)v [1 - h2(m) exp ( -~ l (m)  x3)] ~ 

u = - In X 3 + (.0 , 

where hi(c0),  h2(o)),  and h(m)  are arbitrary twice-differentiable functions and m is an arbitrary solution of sys- 
tem (15). 
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By using, e.g., the solution [12] of the Liouville equation (26 )  

u = In 2 ( s - 2 )  s r  
- x ?  - - 

we find the following broad class of  solutions of  this equation: 

u =  In 
2 (s - 2) 

~,[x 2 - X? - . . . -  XL 2 --(XL+ 1 + hL+l(CO))2--...-(Xs + hs (~ ) )2 ]  ' 

657 

where m is an arbitrary solution of system (16) and h L + l ( m )  . . . . .  hs (m ) are arbitrary twice-differentiable func- 

tions. I f  s = 3, then Eq. (26) has the following family of  solutions in the space R1. 3 : 

2 
u =  In 

~,[X 2 -- X? -- X 2 - - (X 3 + h3(f.O))21" 

By analogy, for the sine-Gordon equation Du  + sin u = 0, we obtain the solutions 

u = 4arc tanhl (m)  e e ~  e o = +-1, e = _ + l ,  

= 2arccos[dn(x3+hl(m),m)] + l ( l + ~ ) r t ,  0 _< m _< 1, u 

u = 2arcc~ x3+hl(m)m 'm)] + l ( l + E ) r t '  0 < m < l , _  _ 

where h i ( m )  is an arbitrary twice-differentiable function and m is an arbitrary solution of  system (15). 

5. Exac t  Solutions of  the Eikonal  Equa t ion  

We consider the eikonal equation 

( ~ul 2- (~u) 2-(~ul 2- (~u'~ 2 = 1 

aXO ) ~,aXl ) ~ aX2 ) ~ aX3 ) " 
(27) 

The symmetry  ansatz u = q~(ml), m t = x o - x 2 - x 2 - x 2, reduces Eq. (27) to  the equation 

(a~p] 2 
4ml[~m-TmL) - 1 = 0. (28) 

We seek a generalized ansatz in the form u = cp(m I , m2). This ansatz reduces Eq. (27) to the equation 

4 m  I + 2 ( g i n  1 .Vf.02 ) + (Vf.02)2 ( 0cp ~2 [~m2 ) = 1. (29) 
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It is obvious that this condition is satisfied if  

Equation (32) has the solutions [12] 

40`11 - ! , . ~ - ' 0 @  = l .  

cp = C~ + l ( x g _ x ? _ x ~ ) l / 2 +  C ? - l x 3  + Ca ' 
2 C l 2 C l 

(q )+C2)  2 = x 2 - x ? - x  2 - ( x  3 + C I )  2, 

which can easily be found by applying the method of  symmetry reduction to Eq. (32), which reduces it to ordinary 

differential equations. Replacing the arbitrary constants C l and C 2 by arbitrary functions hi(co3) and h2(co3), 
we obtain the following broader classes of exact solutions of  the eikonal equation: 

_ 2~1/2 hl(co3) 2 - 1 X3 + h2(co3), hl(co3)2+l(x2-x?-x2) + 2 hi(co3) 
u 2hi(co3) 

( u + h 2 ( c o 3 ) )  2 = x 2 - x ? - x 2 - ( x 3 + h l ( c o 3 ) )  2. 

Note that we have thus also derived broad classes of  exact solutions of the Born-Infeld equation because it is a 

differential consequence of the eikonal equation [3]. 
Consider the following eikonal equation: 

( ~ u l 2 - ( O u ~ 2 - ( ~ u ~ 2 - ( ~ u ~  2 = - 1 .  

OXO ) ~.OXI ) t.Ox2.} t OX3 ) 
(33) 

(32) 

Assume that Eq. (29) coincides with the reduced equation (28). 

co2 is such that 

(VCO2) 2 = 0,  VCOl'VCO 2 = 0. (30) 

Solving system (30), we determine the explicit form of  the variable 0`12- It is easy to see that an arbitrary function 

of  solution (30) is also a solution of system (30). Integrating Eq. (28), we get (u + C) 2 = Xo 2 - x~ - x~ - x~, 

where C is an arbitrary constant. One can obtain a more general family of solutions of the eikonal equation if C is 
regarded as an arbitrary solution of system (30). 

The symmetry ansatz u = q0(co I , 0)2) , COl = x2 -- x2 -- X2' 0"12 = X3' is generalized as follows: Let 0) 3 be 

an arbitrary solution of  the system of  equations 

r r 
ax0 ) - ) - t axa ) ' 

00)3 ~ 00)-'-----330X2 = 0. X0 ~-~0 + X I + X 2 

Then the ansatz u = qo(co 1 , 0`12, 0`13) reduces the eikonal equation to the equation 
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The symmetry ansatz u = (p(f01) , co I = X3, reduces Eq.(33) to the equation ~02 = 1. The reduced equation has a 

solution q0 = ex  3 + C, where ~ -- + 1 and C is an arbitrary constant. Replacing the constant C by an arbitrary 

function h (m2), where (02 is an arbitrary solution of the equation 

( 3 U / 2 - -  r  ( 3 U )  2 = 0, 

3x0) tax,) C3x2) 

we obtain a more general family of  solutions of  Eq. (33): 

u = g x 3 +  h(r 

6. On Exact  Solut ions  of  a SchriJdinger-Type Equat ion 

Consider the equation 

where ~ = ~ ( t ,  x o . . . . .  x n) and 

i~tW = kfqV + ~ F ( I v l ) ,  

32~ 321]/ 

[ ] v  = 3x2 3x? 

The symmetry ansatz ~I/= q~(t) reduces Eq. (34) to the equation 

i,p - ~F(icpl) = 0. 

This ansatz is a particular case of a more general ansatz 

= r co), 

where m is an arbitrary solution of  the system of  equations 

iota = k [ ] v ,  

(Vr 2 = 0). 

3211 / 

"'" 3x~" 

(34) 

(35) 

(36) 

(37) 

Thus, formula (36) defines a family of solutions of  the nonlinear multidimensional equation (34) if q0 satisfies 

(35) and m is a solution of system (37). 

The formula 

{ i/x  x2t} 
~ = exp - -4k-t q~(ml, m2) (38) 

is an ansatz for Eq. (34) if ml = t, m2 satisfies Eq. (37), and 
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The reduced equation has the form 

x oc~ 0o~9 Oco2 + xl ox? + + X" = 0. (39) 

i o~'" + ; ( n  + 1 ) ~  q0 - q)F(Iq~l) = 0. (40) 
0t 2t  

Therefore,  solving Eq. (40) and system (37), (39) and inserting the solutions obtained in formula (38), we get 

broad classes of  exact solutions of  Eq. (34). 

7. System of Nonlinear d'Alembert and Eikonai Wave Equations 

Consider  the system of  equations 

F l u  = F ( u ) ,  

(Vu) 2 = - 1 ,  (41) 

where u = u ( x o ,  x l , x  2, x3) .  System (41) was investigated in [14, 20], where it was proved, in particular, that this 

system is compatible if and only if F ( u )  = N ( u  + C) - I ,  where C is an arbitrary constant and T is a discrete pa- 

rameter that may take one of  the values 0, 1, 2, 3. Let us construct broad classes of  exact solutions of  system (41) in 

the form F ( u )  = 0 and F ( u )  = 3u - I  It is obvious that the system 

FlU = 0 ,  (Vu) 2 = --1 (42) 

has an invariant solution u = ex  3 + C 1 , where C 1 is an arbitrary constant. Therefore,  according to Sec. 2.4, sys- 

tem (42) has the family of  exact  solutions u = ~x 3 + h I (co), where the function co = c o ( x  o,  x t ,  x2) is an arbitrary 

solution of  the system Rco = 0,  (Vco) 2 = 0. The system 

[]u = 3 u - 1 ,  (Vu)  2 = -- 1 (43) 

has the invariant solution u 2 = x 2 - x 2 - x 2 - x 2 .  Applying the group transformation to this solution, we obtain 

the solution u 2 = xg - x~ - x 2 - (x 3 + C) 2. Thus, according to See. 2.4, system (43) has the family of  solutions 

/,12 = X0 2 _  X 2 _  X 2 __(X 3+h(( ,0))2 ,  

where the function co = co(x o, x 1, x2) is a solution of  the system 

Dco 3 = 0,  (Vco) 2 = 0, 

3co x a m  + Oco _ 0. 
X 0 ~  + 10X 1 X2~X 2 

The generalization of  these results to an arbitrary number  n is quite obvious. 
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