ФОСФОРИЛИРОВАННЫЕ ПЕНТАДИЕНОЛЫ И ИХ КОМПЛЕКСООБРАЗОВАНИЕ С ИОНАМИ МЕТАЛЛОВ

© Н. В. Симурова, Д. М. Маленко, В. П. Тихонов, А. Д. Синица

УДК 547.341+541.49

Фосфорилированные пентадиенолы проявляют избирательность при комплексообразовании в зависимости от природы металла. Координация с ионами переходных металлов осуществляется по хелатному циклу, а лантаноиды координируются по атому кислорода фосфонильной группы.

Производные β -дикарбонильных соединений и их металлохелаты широко используются в органическом синтезе, являются биологически-активными веществами, селективными катализаторами, экстрагентами, шифт-реагентами. В то же время склонность β -дикарбонильных соединений к енолизации делает их удобными объектами для изучения кето-енольной таутомерии, природы внутримолекулярной водородной связи. Енолы благодаря своей высокой реакционной способности имеют широкие препаративные возможности.

Ранее [1] реакцией трихлорэтилиденовых производных β -дикарбонильных соединений (I) с триалкилфосфитами нами были получены насыщенные фосфонаты (II), содержащие β -дикарбонильный фрагмент.

$$(RO)_{3}P + CCl_{3}CH = C - CMe$$

$$C(O)R'$$

$$la = \mu$$

$$(RO)_{3}PCH - C - CMe \longrightarrow (RO)_{3}PCH - C - CMe$$

$$Cl_{3}C C(O)R' Cl_{2}C C(O)R'$$

$$Cl_{2}C Cl_{2}$$

$$RO)_{2}PC - C$$

$$RO)_{2}PC - C$$

$$RO)_{2}PC - C$$

$$RO$$

$$RO)_{2}PC - C$$

$$RO$$

$$RO)_{2}PC - C$$

$$RO$$

$$RO)_{2}PC - C$$

$$R'$$

$$Ula = \mu$$

R = Me (a,r), Et (5,A), Pr (B); R' = Me (a-B), EtO (r,A).

В продолжение этих работ нами были изучены реакции соединений (I) с диалкилсилилфосфитами, трифенилфосфином, исследованы некоторые свойства полученных соединений, в част-

ности их комплексообразование с ионами металлов. Указанные превращения протекают в мягких условиях с высокими выходами. Однако для получения фосфонатов (Па,г), содержащих метоксильные заместители, предпочтительнее использовать более удобный в работе и легкодоступный диметилтриметилсилилфосфит.

Фосфорилированные енолы (III), содержащие ониевую группировку, образуются при реакции соединений (Ir,д) с трифенилфосфином.

Наличие фосфониевой группировки подтверждается спектрами ЯМР 31 Р ($^{$

В соединении (III) прочная внутримолекулярная водородная связь осуществляется за счет β -ди-карбонильного фрагмента. Для фосфонатов (II) можно предположить существование кетонной A и двух енольных форм — Б и В.

Институт органической химии Национальной Академии наук Украины, Киев Поступило в Редакцию 5 июля 1996 г.

Анализ спектров ИК, ЯМР 1 Н, 31 Р, 13 С свидетельствует, что фосфонаты (Па—д, ПП) существуют практически на 100% в форме одного изомера — енола Б, гидроксильная группа которого связана внутримолекулярной водородной связью с карбонильной группой β -дикарбонильного фрагмента.

В ИК спектрах пентадиенолов (IIa-д, III) содержится характерная группа полос поглощения сопряженной системы связей С=С-С=О в области 1560—1710 см⁻¹, полоса хелатированной гидроксильной группы 2900-2980 см-1, положение которой не зависит от концентрации исследуемого раствора, что свидетельствует о внутримолекулярном характере водородной связи. В спектрах ЯМР ¹Н наиболее показательным является одиночный сигнал гидроксильного протона в области слабого магнитного поля (12.5-17 м. д.). Такое положение сигнала группы ОН характерно для енолов, стабилизивнутримолекулярной водородной рованных связью [2]. Следует отметить также магнитную эквивалентность двух метильных групп β -дикарбонильного фрагмента в спектрах ЯМР ¹Н соединений (IIa-в). Сигналы, которые относятся к метоксильным группам фосфонильного

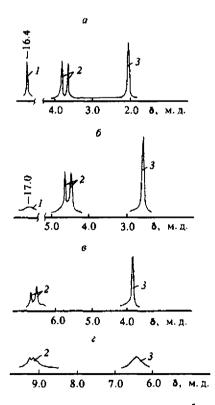


Рис. 1. Изменения в спектрах ЯМР 1 Н диметил[2-(1,1-дихлор-3-ацетил-4-гидрокси-1,3-пентадиенил)] фосфоната (Па) в зависимости от соотношения Eu(fod)3/субстрат в CCl₄: 1/s = 0 (a), 0.15 (б), 0.49 (в), 1.11 (г). 1 - OH, 2 - CH₃OP, 3 - CH₃C=.

заместителя, регистрируются в виде дублета с константой спин-спинового взаимодействия $^4J_{\rm PH}$ 11.2 Гц. Приведенные данные, а также зависимости, полученные при изучении спектров ЯМР ¹Н соединений (II) с применением лантаноидных сдвигающих реагентов (рис. 1—5), позволили однозначно отнести структуру енола к форме Б. Методом спектроскопии ЯМР ¹Н было проведено исследование влияния полярности растворителя (CCl₄, CDCl₃, CD₃CN) и концентрации раствора (от 0.05 до 0.5 моль/л) на положение кето-енольного равновесия соединений (IIа—д). Смещения равновесия в сторону кето-формы при этом отмечено не было,

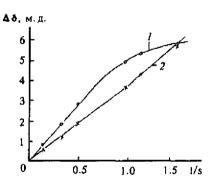


Рис. 2. Кривые магнитного титрования $\delta = f(1/s)$ фосфоната (IIa). $I - CH_3OP$, $2 - CH_3C=$.

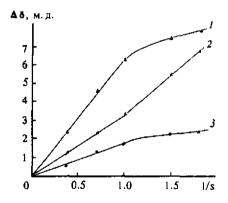


Рис. 3. Кривые магнитного титрования $\delta = f(1/s)$ фосфоната (II6). 1 - CH₃CH₂OP, 2 - CH₃C=, 3 - CH₃CH₂OP.

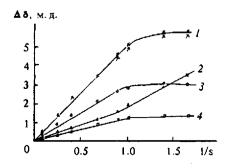


Рис. 4. Кривые магнитного титрования $\delta = f(1/s)$ фосфоната (Пг). $1 - \text{CH}_3\text{OP}$, $2 - \text{CH}_3\text{CH}_2\text{O}$, $3 - \text{CH}_3\text{C}=$, $4 - \text{CH}_3\text{CH}_2\text{O}$.

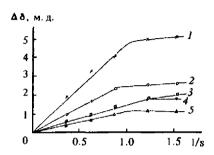


Рис. 5. Кривые магнитного титрования $\delta = f(1/s)$ фосфоната (IIд). $I - \text{CH}_3\text{C}\underline{\text{H}}_2\text{OP}$, $2 - \text{CH}_3\text{C}=$, $3 - \text{C}\underline{\text{H}}_3\text{CH}_2\text{O}$, $4 - \text{C}\underline{\text{H}}_3$. CH₂OP, $5 - \text{CH}_3\text{C}\underline{\text{H}}_2\text{O}$.

что свидетельствует о прочной внутримолекулярной водородной связи в енолах (Иа—д).

Существование фосфонатов (IIa—д) в форме енолов с внутримолекулярной водородной связью свидетельствует об их высокой кислотности. В связи с этим нами было проведено измерение равновесной СН-кислотности полученных соединений методом потенциометрического титрования в водном растворе. Метод определения и формулы расчета pK_a приведены в экспериментальной части. Ниже приведены величины pK_a пентадиенолов (IIa,б,г) в воде при 20°С. Для сравнения приводим значения pK_a ацетилацетона — 9.03 [3], ацетоуксусного эфира — 8.09 (енол), 10.49 (кетон) [4].

M IIa II6 IIr
$$pK_{\alpha}$$
 6.42 6.55 6.79

Как видно из полученных величин pK_a , соединения (II) относятся к довольно сильным СН-кислотам, сравнимым с трифторацетоном (pK_a 6.54) [5].

Наличие в молекуле фосфорилированных пентадиенолов (II) нескольких реакционных центров предопределило многообразие их химических свойств. Силилирование и ацилирование

фосфоната (IIб), как и большинства енолов, протекает региоспецифично по кислородному атому.

Хлорирование соединения (Пб) хлористым сульфурилом приводит к фосфонату (VII). По-видимому, первоначально присоединение хлора протекает по связи С=С хелатного кольца. Элиминирование хлористого водорода приводит к дикарбонильному соединению (VI), которое легко дает аддукт с HCl по поляризованной этиленовой связи.

$$II6 \xrightarrow{SO_2Cl_2} \begin{bmatrix} O & Cl & Me \\ O & Cl & | \\ & | & C=O \\ & | & C=O \\ & | & C=O \end{bmatrix} \rightarrow VI$$

Енолы (II), содержащие фосфонильную группу и β-дикарбонильный фрагмент, являются полидентатными лигандами. В связи с этим было интересно изучить влияние природы металла на комплексообразование с различными координационными центрами этих соединений. Установлено, что с солями меди, кобальта, никеля они образуют хелатные комплексы, растворимые в органических растворителях. Комплекс с медью выделен в индивидуальном состоянии при добавлении енола (II6) к водному раствору ацетата меди. Выпавшие кристаллы представляют собой хелатные комплексы (VIII) фосфонатов с ионами меди в соотношении 2:1.

II6
$$\frac{Cu(Ac)_{2}}{-2 \text{ HAc}}$$

$$O = C C CP(OEI)_{2}$$

$$CCl_{2} CCl_{2}$$

$$Me C CCl_{2}$$

$$Me CCl_{2}$$

Комплексы с солями кобальта и никеля получены в водных (D_2O) растворах. Их образование зафиксировано методом спектроскопии ЯМР

¹Н. Согласно полученным спектральным данным, эти комплексы также имеют хелатное строение. Причем в зависимости от рН раствора образуются комплексы состава 1:1 и 2:1.

Иная картина наблюдается при комплексообразовании с традиционными сдвигающими реагентами: безводными трис- β -дикетонатами европия — дипивалоилметанатом европия Eu (dpm)₃ и 1,1,1,2,2,3,3-гептафтор-7,7-диметилоктади-4,6-оном Eu(fod)₃.

В качестве примера использования сдвигающего реагента на рис. 1 приведены спектры фосфоната (IIa) в отсутствие (a) и после прибавления сдвигающего реагента ($\delta-\epsilon$). Спектры ($\delta-\epsilon$) на рис. 1 соответствуют различным концентрациям лантаноидных сдвигающих реагентов.

Зависимости сдвигов протонов от соотношения лантаноид/субстрат (1/s) изображены на рис. 2— 5. Характер изменений химических сдвигов протонов при добавлении сдвигающего реагента для соединений (11a-a) практически аналогичен. Приведенные зависимости получены для комплексов с $Eu(fod)_3$, спектры аддуктов с $Eu(dpm)_3$ лишь незначительно отличаются от спектров комплексов с $Eu(fod)_3$, поэтому отдельно не обсуждаются.

Из анализа зависимостей, представленных на рис. 2-5, следует, что наибольшее увеличение химических сдвигов при добавлении сдвигающего реагента наблюдается для протонов, связанных с фосфонильной группой. Это свидетельствует о том, что в данном случае координационным центром для фосфорилированных енолов (II) является группа P=O, которая, как известно, благодаря электронодонорным свойствам способна образовывать координационные соединения с ионами редкоземельных элементов [6-8]. При соотношении металл:субстрат = 1:1 достигается насыщение сигнала, а при дальнейщем добавлении сдвигающего реагента снова наблюдается изменение химических сдвигов протонов, указывающее на координацию по карбалкоксильной группе. Можно отметить, что прочность связи фосфонильной группы с ионом металла выше, чем с кислородом карбонильной группы. Об этом свидетельствует то. что при добавлении первых порций сдвигающего реагента (избыток лиганда) ион лантаноида координируется по группе Р=О. Линейный характер зависимостей изменения химических сдвигов от 1/s указывает на то, что образуются аддукты преимущественно одного состава, а наличие четких перегибов при 1/s ~1 указывает,

что соответствующие аддукты имеют высокую прочность и их состав соответствует стехиометрии 1:1.

Таким образом, при изучении координационных свойств фосфонатов (II) установлено, что они содержат донорные центры, избирательные по отношению к различным металлам. Так, при координации с традиционными сдвигающими реагентами Eu(dpm)3, Eu(fod)3 комплексообразование осуществляется по кислороду фосфонильной группы до соотношения металл:субстрат = 1:1. При дальнейшем увеличении концентрации сдвигающего реагента наблюдается координация по кислороду карбалкоксильной группы. В водных растворах с солями кобальта, никеля, меди образуются комплексы состава 1:1-1:2 с координацией металла по хелатному циклу и не наблюдается координации по группе P=0.

Экспериментальная часть

ИК спектры соединений записаны на спектрометре UR-20 (тонкий слой или таблетка с KBr). Спектры ЯМР ¹Н получены на приборе Tesla BS-487B с рабочей частотой 80 МГц в растворе CCl₄, Gemini-200 Varian с рабочей частотой 200 МГц в растворе CDCl₃, внутренний стандарт — ГДМС. Спектры ЯМР ³¹Р зарегистрированы на приборе Bruker WR-200 при рабочей частоте 80.026 МГц в CCl₄ или бензоле относительно внешнего стандарта — 85% -ной Н₃РО₄. Спектры ЯМР ¹Н комплексов фосфонатов (II) с лантаноидными сдвигающими реагентами сняты на приборе Tesla BS-487B (80 МГц) с внутренним стандартом — ТМС.

Общая методика получения фосфонатов (II). К 0.1 моля хлорпроизводного (I) при охлаждении до $15-20^{\circ}\mathrm{C}$ и перемецивании прибавляли по каплям 0.1 моля триалкилфосфита. Смесь выдерживали при перемецивании 1 ч, оставляли на ночь при комнатной температуре. Хлористый алкил удаляли в вакууме водоструйного насоса. Фосфонаты (II) выделяли перегонкой в вакууме. Выход 82-89%.

Фосфонаты (IIa,б,г,д) описаны нами ранее [1].

Дипропил [2-(1,1-дихлор-3-ацетил-4-гидрокси-1,3-пентадиенил)] фосфонат (Нв) получен из трихлорэтилиденацетилацетона и трипропилфосфита. Выход 73%, т. кип. 131—132°C (0.06 мм рт. ст.). ИК спектр, ν , см⁻¹: 1565, 1615 (С=С—С=О). Спектр ЯМР ¹H, δ , м. д.: 0.9 м (6H, С $_{13}$ СH₂CH₂O), 1.67 м (4H, CH₃CH₂· CH₂O), 2.0 с (6H, CH₃C=), 4.0 м (4H, CH₃CH₂· C $_{12}$ O), 16.5 $_{13}$ (1H, OH). δ _P 11.15 м. д. Найде-

но, %: Cl 19.77; Р 8.99. $C_{13}H_{21}Cl_2O_5P$. Вычислено, %: Cl 19.74; Р 8.62.

Получение фосфонатов (IIa,г) из трихлорэтилиденовых производных β -дикарбонильных соединений (I) и диметилтриметилсилилфосфита. К раствору 0.1 моля хлорида (I) в 30 мл эфира при 20-25°С прибавляли по каплям диметилтриметилсилилфосфит. Выдерживали при этой температуре 2 ч, растворитель удаляли в вакууме, остаток фракционировали. Выход 78%. Константы соединений (IIa,г), полученных обоими методами, совпадают.

Этил [2-(2,2-дихлор-1-трифенилфосфонийхлорид)-3-гидрокси]-2-бутеноат (III). К раствору трихлорэтилиденацетоуксусного **МОЛЯ** эфира в 15 мл эфира при охлаждении до $5\!-\!10^\circ\mathrm{C}$ и перемещивании прибавляли по каплям раствор 0.025 моля трифенилфосфина в 50 мл эфира. Выпавший в осадок продукт отфильтровывали, высущивали в вакууме водоструйного насоса. Выход 67%, т. пл. 162-164°С. ИК спектр, ν , см⁻¹: 1605, 1705 (C=C-C=O). Спектр ЯМР 1 Н, δ , м. д.: 1.03 т (3H, $CH_{3}CH_{2}O$), 2.20 с $(3H, CH_3C=), 3.87 \text{ K} (2H, CH_3CH_2O), 7.57 \text{ c}$ $(15H, C_6H_5), 12.6 c (1H, OH). \delta_P 25.0 м. д.$ Найдено, %: Cl 20.26; P 5.85. $C_{26}H_{24}O_3Cl_3P$. Вычислено, %: С1 20.38; Р 5.93.

Диэтил[2-(1,1-дихлор-3-ацетил-4-триметилсилилокси-1,3-пентадиенил)]фосфонат (IV). К раствору 0.05 моля енола (Иг) и 0.05 моля триэтиламина в 20 мл эфира при охлаждении до 0-5°C и перемешивании добавляли по каплям 0.05 моля триметилхлорсилана. Выдерживали 1 ч при 20°С. Солянокислый триэтиламин отфильтровывали, растворитель удаляли в вакууме. Продукт фракционировали в вакууме. Выход 70%, т. кип. 126-127°C (0.18 мм рт. ст.), n_D^{20} 1.4975. ИК спектр, ν , см⁻¹: 1155 (SiO), 1265, 1429 (Si-CH₃), 1625, 1675, 1702 (C=C-C=O). Спектр ЯМР 1 Н, δ , м. д.: 0.22 с, 0.3 с [9H, Si(CH₃)₃], 1.25 τ (6H, CH₃CH₂O), 2.0 c $(3H, CH_3C=0), 2.20 c, 2.22 c (3H, CH_3C=), 4.02$ м (4H, CH $_3$ C $\underline{\text{H}}_2$ O). δ_{P} 10.2 м. д. Найдено, %: Cl 17.63; P+Si 14.63. С₁₄H₂₅Cl₂O₅PSi. Вычислено, %: Cl 17.58; Р 7.67; Si 6.96.

Диэтил [2-(1,1-дихлор-3-ацетил-4-ацетокси-1,3-иентадиенил)] фосфонат (V). К раствору 0.05 моля енола (IIr) и 0.05 моля триэтиламина в 20 мл эфира при охлаждении до 0-5°С и перемешивании прибавляли по каплям 0.05 моля хлористого ацетила. Выдерживали 1 ч при 20°С. Солянокислый триэтиламин отфильтровывали, растворитель удаляли в вакууме. Продукт фракционировали в вакууме. Выход 74%, т. кип. 134-135°С (0.2 мм рт. ст.), n_D^{20}

1.4936. ИК спектр, ν , см⁻¹: 1615, 1700 (С=С—С=О), 1765 (С=О). Спектр ЯМР ¹H, δ , м. д.: 1.249 т, 1.286 т (6H, С $_{\rm H_3}$ СH₂O), 2.10 с (3H, С $_{\rm H_3}$ С=), 2.157 с (3H, С $_{\rm H_3}$ С=О), 2.30 с, 2.33 с (3H, С $_{\rm H_3}$ СОО), 4.09 м (4H, С $_{\rm H_3}$ С $_{\rm H_2}$ О). $\delta_{\rm P}$ 7.53 м. д. Найдено, %: Сl 19.65; Р 8.32. С $_{\rm 13}$ H₁₉·Сl₂О₆Р. Вычислено, %: Сl 19.00; Р 8.30.

Диэтил[2-(1,1,1-трихлор-3-ацетил-3-хлор-4оксопентил)]фосфонат (VII). К 0.5 моля енола (Иг) при охлаждении до 0-5°C и перемещивании добавляли по каплям 0.05 моля хлористого сульфурила. Перемешивали 1 ч при 20°C, затем выдерживали при 20°C 16 ч. Солянокислый триэтиламин отфильтровывали, растворитель удаляли в вакууме. Продукт фракционировали в вакууме. Выход 76%, т. кип. 124-125°C $(0.2 \text{ мм рт. ст.}), n_D^{20} 1.5067$. ИК спектр, ν , см⁻¹: 1710 (С=О). Спектр ЯМР ¹Н, д, м. д.: 1.315 т (6H, $C_{H_3}CH_2O$), 2.01 с, 2.407 с (6H, $CH_3C=O$), 4.086 м (4H, CH_3CH_2O), 5.21 д (1H, CH-P, $^2J_{PH}$ 25 Γ ц). ∂_P 9.5 м. д. Найдено, %: Cl 31.19; Р 9.36. С₁₁H₁₇Cl₄O₅P. Вычислено, %: Cl 31.78; P 9.25.

Комплекс диэтил [2-(1,1-дихлор-3-ацетил-4-ацетокси-1,3-пентадиенил)] фосфоната (H6) с Cu(H) (VIII). К раствору 0.005 моля ацетата меди в 12 мл воды при $35-40^{\circ}$ С прибавляли 0.01 моля енола (H6). Оставляли для кристаллизации. Кристаллы комплекса отфильтровывали, высушивали на воздухе. Выход 61%, т. пл. $127-129^{\circ}$ С. Найдено, %: Cl 19.65; P 8.62. С $_{22}$ H $_{32}$ Cl $_{4}$ CuO $_{10}$ P $_{2}$. Вычислено, %: Cl 19.59; Р 8.55.

Определение pK_a фосфонатов (II). Величины pK_a фосфорилированных енолов (II) определяли методом потенциометрического титрования, используя методику [9]. Титровали 50 мл 0.01 М. раствора исследуемого вещества. Титрант — 2.5 мл 0.2 н. раствора едкого натра. Измерения проводились в воде при 20° С на приборе pH-340.

Расчет р K_a проводили по следующей формуле [9].

$$pK = pH - lg \frac{x}{c - x} - lg \frac{\gamma_{X}}{\gamma_{HX}}$$

Здесь x — концентрация NaOH в точке нейтрализации, c — начальная концентрация исследуемого вещества, $\gamma_{\rm X}$ -, $\gamma_{\rm HX}$ — коэффициенты активности, $\gamma_{\rm HX}$ принимали равным единице, так как HX не ионизирован.

Коррекцию активности γ проводили по формуле Дебая—Хюккеля — $\lg \gamma = 0.5 z_i^2 \mu$, где z_i — заряд

иона, μ — ионная сила раствора, равная 0.5 $\Sigma c_1^2 z_1^2$.

- а. Спектры со сдвигающимися реагентами. Анализировали изменения химических сдвигов и формы линий поглощения в зависимости от концентрации лантаноидных сдвигающих реагентов. Сдвигающие реагенты очищали сублимированием в вакууме. В качестве растворителей использовали CCl₄, CDCl₃, предварительно очищенные от следов влаги и кислот и выдержанные над молекулярными ситами.
- б. Спектры с переходными металлами. Для получения комплексов с кобальтом, никелем и медью были приготовлены водно-спиртовые растворы фосфонатов (II) (D₂O, CD₃OD в соотношении 1:1) с концентрацией 0.1—0.4 моль/л, содержащие соли CoCl₂, NiCl₂, CuCl₂. Исследовали спектры ЯМР ¹Н комплексов фосфонатов (II) с варьированием соотношения металл:лиганд от 1:1 до 1:2 в широких пределах рН раствора. Безводные соли получали из кристаллогидратов удалением воды по методике [10]. Спектры регистрировались по методике [11]. Условия измерения (температура, приборные параметры) поддерживали постоянными для каждой серии измерений.

Список литературы

- [1] Маленко Д.М., Симурова Н.В., Синица А.Д. // ЖОХ. 1988. Т. 58. Вып. 8. С. 1921-1923.
- [2] Сильверстейн Р., Басслер Г., Моррил Т. Спектрометрическая идентификация органических соединений. М.: Мир, 1977. 592 с.
- [3] Laloi L., Rumpf P. # Bull. Soc. chim. 1961. Vol. 9. P. 1645-1653.
- [4] Eidnoff M.L. # J. Am. Chem. Soc. 1945. Vol. 67. N 12. P. 2072-2073.
- [5] Реутов О.А., Белецкая И.П., Бутин К.П. СН-Кислоты. М.: Наука, 1980. 248 с.
- [6] Burger L.L. # Nucl. Sci. Eng. 1963. Vol. 16. N 4. P. 428-439.
- [7] Kasnman Y., Awerbouh O. // Tetrahedron. 1971. Vol. 27. P. 5600.
- [8] Rachman Y. # Spectr. Lett. 1980. Vol. 13. N 8. P. 513-516.
- [9] Pearson R.G., Dillon R.L. # J. Am. Chem. Soc. 1953.
 Vol. 75. N 12. P. 2439-2427.
- [10] *Карякин Ю.В., Ангелов И.И.* Чистые химические реактивы. М.: Химия, 1974. 408 с.
- [11] Тихонов В.П., Костромина Н.А. // ТЭХ. 1983. Т. 19. № 2. С. 244.