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An approach to construction of exact solutions of nonlinear equations on the basis of sepa-
rated variables is proposed. 

1 Introduction 
To construct the exact solutions of nonlinear equations in mathematical physics the following 
ansatz is commonly used 

where f(x), g(x). U) = LJ(X,U) are certain functions, and functions ip(U>) are undetermined. If 
the explicit form of variables U = LU(X,U) and functions F(x), g{x) is determined on the basis of 
subalgebra of invariance algebra of this equation, then ansatz (1) is called as a symmetry or Lie 
one. Not all ansatzes are symmetry ones. 

In [1-4] a definition of conditional invariance of this differential equation was introduced. 
If the explicit form of new variables u = u(x,u) and functions / ( x ) , g(x) are determined on 
the basis of conditional symmetry operators then ansatz (1) is called an arbitrary invariant or 
non-Lie one. By means of arbitrary invariant ansatzes new classes (types) of exact solutions of 
many nonlinear equations in mathematical physics were constructed. Let us note an effective 
algorithm for finding of arbitrary symmetry operators is not found yet. 

In this paper an approach to the construction of exact solutions of nonlinear equations is 
proposed. It is based on the method of separated variables and has a great advantage in view 
of its simplicity and possibility to be unchanged for construction of exact solutions for many-
dimensional equations. We will consider this approach using the Boussinesq equation. 

u(x) = f(x)ip(u) + g(x). ( 1 ) 

2 Exact solutions of the Boussinesq equation 
u0 — A (Vu)2 + XuAu 

Let us consider the Boussinesq equation 

uq = A (Vif)2 + XuAu, 

Qu 
where A is an arbitrary constant, u = u(xo, x i , . . . . xn), UQ = ——, and 

ox 0 

(2) 
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Certain partial solutions of Eq.(2) for two variables XQ. X have been obtained in [5, 6], and 
for many variables in [1, 7]. 

Now let us consider the one-dimensional Boussinesq equation 

/ du\2 d2u 
U 0 = X W J + X u d ( 3 ) 

2.1. We seek for a solution of Eq.(3) in the form u = a(xo)b(xi), where functions a(xo) and 
b{xi) are not constants. Substituting into Eq.(3) we have 

Ad2bb" + Aa2b2 - a'b = 0. (4) 

It follows from (4) that the functions a2, a' are linearly dependent. Consequently a' = aa2 for a 
real number a and Eq.(3) has the form (Abb" + Ab 2)a2 — aa2b = 0. We find from this equation 
Abb" + Xb 2 — ab = 0. Notice that the substitution a' = aa suggests a = 1. Thus we will consider 
the equation 

A bb" + A b2 -b = 0. (5) 

The general solution of Eq.(5) has the form 

I V ^ T F V 3A 
bdb , / 2 . 

= ± J — ( x i + d ) , (6) 

where c, C\ are arbitrary constants. If, for example, c = 0, then b — ^ ( x i + ci)2 , and we obtain 
the solution of (3) 

(®i + c i ) 2 
u = — -

6A(xo + c 2 ) ' 

which is transformed into 

« 3 ^ - ( 7 ) 

The solution (7) is a partial case for 

x2 

U = -TTT2— + / ( x o , x i ) . oAxo 
Substituting into Eq.(3), we find 

The solution of Eq.(8) can be found in the form / = a(xo)b(x\) and we have 

^Xlb'-^b"-^b\+a2 (^Xb"2 + Xbb" i. o ( 2 ,/ x, , „ 1 a b = — 
xo 

Let a' = Q ^ , where a is a real number. Hence, a = CXQ. To determine the function b(xi) we 
find the system of equations: 

x\b" + Ax\b' + (2 + 6q)6 = 0, b'2 + bb" = 0. 
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Thus, the Boussinesq equation possesses the following solution 

_ - 5 / 8 1/2 _ x\ u-cx0 x, 6 Л ж о -

If the function / in (8) depends on xo only, then we obtain /о = - щ / . Thus, Eq.(3) has a 
solution 

x2 -1/3 

2.2. Now let us consider Eq.(2) for the case n > 1. We shall look for solution of (2) in 
the form u = a(xo)b(x\,... , x^), where the functions a(xo) and b(xi,... , x^) are not constant. 
Substituting this expression into (2) we find 

A a2 [(V6)2 + bAb] - a'b = 0. (9) 

It follows from (9) that functions a2, a' are linearly dependent, thus a' = aa2 and Eq.(9) has a 
form 

(AbAb + A(V6)2) a2 - Aa2b = 0. 

It can be obtained from this equation that 

XbAb + A(Vfe)2 -ab = 0. (10) 

The function b = cp(uj), uj = x\ + • • • + x\, b < n satisfies Eq.(lO) iff 

4Auxpip" + 2kXtp<p' + 4Auy'2 -aip = 0. (11) 

If Q = 2A(k + 2) then a particular solution of Eq. ( l l ) is the function <p — ш. Since the equation 
of = aa2 possesses the solution а. = — then Eq.(2) has a solution of the form 

x\-\ hx2 

U ~ ~ 2X(k + 2)x0 ' ( } 

The solution (12) is a particular case of 

x? + • • • + X? 
u ~ ~ 2X(k + 2)xo + / ( * < » , - , * * ) • 

Substituting this expression into Eq.(2) we obtain 

£ 1 i/"l 23/ ̂  Jfc / 2 n'2 „2 2\ 
/ o = _ A( / t + 2)x0 X(k + 2 ) x o + X [ f l + " ' + f k + f k + 1 + "' + fn) 

•̂ i + • • • + r>\ / n n \ k 
(13) 

Let the function / be independent of x j . . . . . x ,̂. then 

Л = Л ( Ä + 1 + . . . + il) + л ( + / ) ( w . + ••• + / - > - ^ j - — / 

Thus, 

(Л+i.Jfe+1 + • • • + /пп) = о, /о = А ( / 2 + 1 + • • • + / 2 ) - { k + 2 ) x J - (14) 



76 A.F. Barannyk and I.I. Yuryk 

The solution of (14) can be found in the form 

/ = /лк+1хк+1 H h VnXn + 

where Hk+1, • • • u a r e functions dependent on x0 only. Substituting this expression into the 
second equation of (14) we have 

—2 Xk+l H I- a Xn-\-
OXО OXО OXQ 

к 
= A (//|+1 + • • • + / 4 ) - + 2 ) t q (fik+lXk+i + • • • + HnXn + v) • 

Thus, 

dfik+i k 

дхо (k + 2)XQ Mk+1, 

dp* = k (15) 
дхо (k + 2)x0 

dis к 

The general solution of (15) has the following form: 
k k+2 k+2 fJ-k+1 — ck+lxQ i • • • i Mn = CjiXq , 

- = ^ ^ ( 4 + 1 + - + <£) X ^ + c * - ^ , 

where c, Cfc+i,.... cn are arbitrary constants. 
Thus, we obtain the multiparameter set of solutions of Eq.(2) 

U = -X2X+(k + Î)xo + { C k + l X k + 1 + ' ' ' + C n X " + C) * * 
-k+2 ï \ ^ k+2 ' ^ \ (Cifc+1 !" Cn) X0 2 

Moreover, if k = 1, n — 3 then solution (16) takes the form 

u = + (c2x2 + c3x3) x^ 1 / 3 + y (cl + cf) xl/3. 

If k = 2, n — 3 then solution (16) has a form 
X? + Xo -1/2 2 u = ~ r — - + c3x3x0 + 2 Ac2. 

OAXo 
If the function / in (13) does not depend on x\,..., xk, then we have 

F k . 
7 0 (FC + 2)XQ 

Thus, 

/ = cx0 
к 

k + 2 

(16) 
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And the Boussinesq equation (2) has also the following solution 

_ + xl , 
2A(fc + 2)x0 0 ' 

If, for example, k = 2 then we have 

X? + X| , " 1 / 2 

In the case of k = 3 we have 

xf + xl + xl —3/5 
W = + • 

3 Exact solutions of the Boussinesq equation 
itQQ + ( V u ) 2 + uAu + A ( A t x ) = 0 

Let us consider the Boussinesq equation 

uoo + uun + u\ + u i m = 0, (17) 

where 

du d2u d^u 

It is invariant with respect to the algebra with operators [8] 

d d n „ d d n 8 
PQ = —, P\ = -3—, D = 2x0— + xi- 2u—. 

<7x0 <7Xi axo o>xi cm 

Operators P0- Pi and D give rise to the one-parameter symmetry group of equations: 

G0 : (x0, x i : u ) (^o + u), 
Gi : (xo,xi,u) (XQ.XI + e,u), (18) 

G2 • {XQ,X\,U) —> (e2i?xo, e exi, e~2eu) . 

Eq.(17) is also invariant under the discrete transformations 

(x 0 , x i ,u ) —> ( XQ. Xi, u), 
( x 0 , x i , w ) -»• (x 0 , - X I , W ) , (19) 

(x0, xi, u) ( - x 0 , - x i , u). 

One-parameter subgroups (18) and discrete transformations (19) give rise to the group G of 
Eq.(17). Therefore, the most general solution obtained from u = / ( x o , x i ) by means of the 
transformations of the group G has the form 

u = a2f (a2x0 + Po, otx\ + f3\) , 

where a, 3o, f3\ are arbitrary real numbers. 
The derivation of exact solutions of Eq.(17) is discussed in [1-4]. A new method of invariant 

reduction of the Boussinesq equation is proposed in [2]. Exact solutions of Eq.(17) on the basis 
of the conditional symmetry concept are obtained in [3-4]. 



78 A.F. Barannyk and I.I. Yuryk 

3.1. We seek a solution of Eq.(17) in the form u — a(xo) + b(xi). where the functions a(xo) and 
b(xi) are not constant. Substituting this expression into Eq.(17) we have 

a" + ab" + (bb' + b'2 + b"") = 0. (20) 

Since b is independent of XQ. it is clear from Eq.(20) that a" = a+(3a for real a and 3. Therefore, 
we obtain from (20) that a(0 + b") + (a + bb" + b'2 + b"") = 0. i.e. 

b" + 0 = 0, bb" + b'2 + b"" + a = 0. (21) 

If (3 = 0 then the system of Eqs.(21) possesses a solution b = 7x1 + 5, where 7 2 = —a. The 
function b(x\) can be transformed into 2xi by means of a transformation from the group G. 
Then a = —4 and a = —2xq + 71X0 + ^1, where 71 , are real numbers. Since a can be rewritten 
as a = —2(xo — 7i /2) 2 + <51 — 7 2 /4 , this solution can be transformed with the help of the group 
G to become 

u = 2 (xi - xl) . (22) 

Let us construct another type of solutions to Eq.(17) with partial solution (22) to the Boussinesq 
equation. A partial solution of Eq.(17) can be found in the form 

u = 2 (x\ — XQ) + / (xo , Xi). (23) 

Ansatz (23) reduces Eq.(17) to the form 

/00 + / /11 + /1 + /1111 + 2 (X! - x2) fn + 4/1 = 0. (24) 

Ansatz (p = <p(uj), u> = xi + XQ reduces Eq.(24) to the ordinary differential equation 

+ + v" + 2 V + 6 <p' = 0. (25) 

A partial solution of Eq.(25) we find in the form tp = tu>s, s / 1. Substituting it into (25) we 
obtain s = —2, t — —12. Thus, the function 

u = 2 (xi - xl) - 12 (xi + xl) ~2 (26) 

is a solution of Eq.(17). 

3.2. Now, we look for a solution of Eq.(17) in the form u = a(xo)b(xi), where the functions 
a(xo) and b(x 1) are not constant. Substituting this expression into (17) we obtain 

a"b + a2(bb" + b'2)+ab"" = 0. (27) 

In complete analogy with Subsection 3.1 we see that a" = aa2 + /3a. Substituting a" into Eq.(27) 
and taking into account the functions a and a2 are linearly independent we obtain the following 
system to determine the function fr(xi) 

b"" + pb = 0, bb" + b'2 + ab = 0. (28) 

It may be easily seen from these equations that /3 = 0 and a ^ 0. We can always set a = 6 
by multiplying the function a by the number a / 6 and the function b by 6/a. Since /3 = 0, we 
see from the first, of equations (28) that b is polynomial in x\ of degree not higher than three. 
Plugging b in the form of the general polynomial of degree three into the second of equations 
(28), we see that in fact b = — x\. Hence, Eq.(17) possesses the solution 

u = - x ? P ( x 0 ) , (29) 
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u = 2 „ - 2 
l x0 (30) 

where V(XQ) is the Weierstrass function with invariants c/2 = 0 and = c\. 
A new class of solutions of Eq.(17) can be constructed using its partial solution (29). We 

look for these new solutions in the form 

u = -x\V{x0) + f(xQlx i). (31) 

Ansatz (31) reduces Eq.(17) to 

(/oo + ffn + fl + /1111) - v (xjfn + 4xi / ! + 2 / ) = 0. (32) 

If the function / is independent of Xi, then we have /oo = 2Vf. This is the Lamé equation 
and its solutions are well-known [11]. Thus, the function 

u = -x\V{x0) + A(x0), A" = 2V^ (33) 

is a solution of the Boussinesq equation. 
If the function / in (32) does not depend on xo, then we have a system of equations to 

determine the function / 

x f / n + 4x i / i + 2 / = 0, ffn + /i2 + / 1 1 1 1 = o. (34) 

The first equation of this system is linear and its complementary function is well-known [11]. 
Hence, / = -12x~ 2 , and Eq.(17) possesses a solution 

u = -x\V{x0) - 12x^~2. (35) 

We obtain simultaneously that the function 

u = - 12x~ 2 (36) 

is a solution of the Boussinesq equation too. 
Then we find a solution of Eq.(32) which is dependent on xo and x\. It can be found in 

the form / = a(xo)b{x\) + c(xo) where functions a(xo) and c(xo) are linearly independent. 
Substituting into Eq.(17) we obtain 

c" + a"b + a2 (bb" + b'2) + acb" + ab"" + aV (~x^2b" - 4xib' - 2b) -2Vc = 0. (37) 

Without going into details let us suppose from the outset that b" = 0. Then b = axi + 3 and 
consequently / = aa(xo)xi + (/3a(xo) + c(xo)). It means that, setting a = 1, 0 = 0 in Eq.(37) 
we arrive at 

c" + aa"x\ + a2 + aV{-Axx - 2xi) - 2Vc = 0. 

Thus, 

a" - 6Va = 0, c" = -a2 + 2Vc. (38) 

The equation a" — 6Va = 0 is the Lamé equation with a solution a = V{XQ). Hence the 
complementary function of the Lamé equation can be written as a — ^\V{XQ) + 72A(xo), where 
V{x0) and A(xo) are linearly independent. The corresponding solution of Eq.(17) has the form 

u = -V{x0){x1 - 7 i /2) 2 + 72XiA(x0) + (c(x0) + 712 /4P(x0)) . 
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Under transformations from the group G it reduces to 

u = -x\V(x0) + 72XIA (X0 ) + d(x0), (39) 

where the function d{xo) is a solution of the following equation 

d" = - 7 2 A 2 + 2 Vd. 

In a similar manner from (30) a new class of the Boussinesq equation solutions can be con-
structed 

u = -x\x\ - 12x]~2, (40) 

c2 
U = - Z 2 X 2 + CIXQXI - ^-X^ + C2XQ + c 3x 0 (41) 

The solution of Eq.(17) is in the form u = A(xo)6(xi) + C(XQ), where functions A(Xo) and c(xo) 
are linearly independent. By substituting in Eq.(17) we obtain 

a"b + c" + a2 (b12 + bb") + acb" + ab"" = 0. 

If c" = CM2, a" = 0, then 

a2 (a + b'2 + bb") + acb" + ab"" = 0. 

It follows from this equation that 

b'2 + bb" + a = 0. b" = 0. 

The solution of this system up to transformations from the group G is a function b = x\ if 
Q = —1. Then with the requirement that c" = era2, a" = 0, it is possible to obtain a = XQ, 
c — — jTjXq + 7x0 + <5- Thus the function 

1 4 

U = X0XL - — x 0 + 7 x 0 + 6 

is the Boussinesq equation solution with arbitrary real numbers 7 , 5. 

3.3. We go now to the construction of exact solutions of the Boussinesq equation for the case 
n > 1. The generalization of Eq.(17) for arbitrary number of variables xo, X i , . . . , x n is the 
equation [10] 

uqo + (Vw)2 + uAu + A (Su) = 0, (42) 

where 

du \2 f du\2 A d2u d2u -L L All = 1- . . . -I 
i^Sxi/ + + \9x„7 ' ^U dx\+ ' + dx2n 

The solution of (42) can be found in the form u = a(xo)b(x\,... ,x&), k < n. Substituting this 
expression into (42) we have 

a"b + a2 [bAb + (V&)2] + aA(Ab) = 0. 

Hence c" = era2 + da and as a result we obtain the following system to determine the function 
b(x i , . . . , x f c ) 

A{Ab) + 0b = O, bAb + (V6)2 + ab = 0. 
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I f b = 0, then a ^ 0 and it may be considered that a = 6. The system has a solution 
b = —-^2 {xi + • • • + x'i) for these values b and a. Therefore, the Boussinesq equation solutions 
are functions 

u = -~ -{x\ + --- + x2k)V{xQ), (43) 

( x2 + . . . + x 2 ) x - 2 _ ( 4 4 ) 

k + 2 

3 
u — — -

k + 2 

Let us construct another solution of Eq.(42) from (43). We will look for it in the form 

u = 
k + 2 

Ansatz (45) reduces Eq.(42) to 

/ O O + ( V / ) 2 + / A / + A ( A / ) 

(x? + • • • + x2k) V{x0) + fixo,xi,..., xk). (45) 

-V 3 ' (- x£) Af + (4xi / i + • • • + 4x k fk ) + 2kf 
k + 2 

(46) 
= 0. 

If / does not depend on variables x\,...,xk in Eq.(46) then /oo = ^ f e / and. therefore, the 
function 

Q RU 
u = - — ( x \ + --- + xl) V(x0) + A(xo), A" = J ^ V A (47) 

is a solution of Eq.(42). 
If the function / depends on variables XQ. x\,..., xk in (46) then the solution of Eq.(42) can 

be obtained in the following form 
3 

u = — - (x2 + ... + x\) V{xQ) + axiA(xo) + c(x0), (48) 
k + 2 

where Vn = 6V2, A" = (4 + 2k)VA, c" = -a2A2 + 2Vc 
Similarly we find a solution of Eq.(42) from (44): 

1+ I 25k+2 / 2Sk+2 

u = ~kT2 (X1 + • • • + xk) xo 2 + cixgxx - ~[124 + c2x0 2 + c3x0 2 

where ci, C2, C3, C4 are arbitrary real numbers; k = 1 , . . . , n. 
A new type of solutions of Eq.(42) can be constructed using 

u =-xfP(xo) + f(x0,x2,x3). (49) 

Substituting anzats (49) into (42) we have 

/ o o + ( v / ) 2 + / ( A / ) + A ( A / ) - X2V(A/) - 2 V f = 0 . 

Since the function / does not depend on x\, then Af = 0 and we obtain the following system 
of equations to determine the function / : 

/oo + fl + fi - 2 V f = 0, / 2 2 + /33 = 0. (50) 

We will seek now a solution of Eqs.(50) in the form / = a(x0)x2 + b(x0)x3 + c(xo). Substitution 
of / into the first equation of (50) gives 

a"x2 + b"x3 + c" + a2 + b2 — 2 V(ax2 + bx3 + c) = 0. 
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It follows from this equation that 

a" = 2Va, bu = 2Vb, c" = -a2 - b2 + 2Vc. (51) 

Solving Eq.(51) we find the explicit form of functions a(xo), b(xo), c(xo) and the solution of 
Eq.(42) too. 

If we use the ansatz 

u = -X\XQ 2 + / ( x 0 , x2, x 3 ) , 

we construct by analogy with the above the following solution of Eq.(42): 

U = -X2XQ 2 + (CIXQ + C 4 X Q 1 ) X2 + (C3XQ + C±XQ1) X3 

c\ + C2 6 CjC2 + C3C4 3 c\ + c§ 
2 8 ~ X ° 2 X o + 28 • 

And using the ansatz 

•u = - ^ (xj + X22) V { X 0 ) + / ( s 0 , x 3 ) 

another solution of Eq.(42) can be obtained 

u = {x\ + x ! ) V{x0) + A(x 0 )x 3 + c(x0 ) , 

where A" = 2PA, c" = - A 2 + 277c. 
Making use of 

U = ~ {x\ + z|) Xq 2 + / ( x 0 . x 3 ) 

we find a solution of Eq.(42) in the form 

u=-^{x\ + X22) X~2 + (cixg + C2Xq x ) x 3 + - + y • 
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