ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННОГО СТРОЕНИЯ И РЕАКЦИОННОЙ СПОСОБНОСТИ КВЕРЦЕТИНА И РУТИНА МЕТОДАМИ КОМПЬЮТЕРНОЙ ХИМИИ

Стеценко Н. А., Симахина Г. А.

Национальный университет пищевых технологий, Киев, Украина, e-mail: n.st71@mail.ru

Исследованы пространственное строение и энергетические характеристики основных представителей группы биофлавоноидов — кверцетина и рутина методами молекулярной механики и квантовой химии.

Ключевые слова: биофлавоноиды, кверцетин, рутин, молекулярная механика, квантовая химия, электронная плотность.

Среди изученных на сегодня биофлавоноидов самой высокой антиоксидантной активностью отличаются кверцетин и рутин [2]. Эти же соединения содержатся в наибольших количествах во многих растительных объектах. Поэтому по степени их биологической активности можно в целом оценить эффективность того или иного природного источника биофлавоноидов.

Целью данной работы было исследование пространственного строения, энергетических характеристик и реакционной способности молекул кверцетина и рутина методами компьютерной химии.

На свойства и реакционную способность биологически активных веществ существенно влияет их пространственное строение. Методы молекулярной механики, квантовой химии дают возможность рассчитать геометрические параметры молекул и их энергетические характеристики, которые будут адекватны экспериментальным данным [3].

Молекулярная механика — это метод изучения строения и свойств различных химических соединений. Он основывается на законах упругости, описывающих взаимодействия, которые приводят к соединению атомов в молекуле. Основные математические уравнения метода связаны с законом Гука. Это обусловливает необходимость введения ряда параметров — констант упругости. Поэтому данный метод можно отнести к эмпирическим. Преимущества его использования по сравнению с другими методами компьютерной химии заключаются в относительной простоте и скорости расчетов. В связи с тем, что в основу молекулярной механики положены законы классической механики, данный метод позволяет установить лишь механическую модель молекулы. Задача компьютерных программ, реализующих метод молекулярной механики, заключается в расчете энергетических характеристик молекулы и в нахождении ее оптимального геометрического строения путем поиска минимального значения энергии в зависимости от координат атомов [1].

Одним из программных комплексов, который позволяет проводить исследования пространственного строения биологически активных веществ и их свойств, является программа HyperChem. Она удобна в использовании, имеет развитый интерфейс, позволяет обмен информацией с другими программами [3]. Поэтому все расчеты в данной работе проведены в среде программы HyperChem.

Для характеристики пространственного строения на рис.1 приведено оптимизированное строение молекулы кверцетина с указанием нумерации атомов, а на рис.2 — оптимизированное строение молекулы рутина.

Рис. 1. Оптимизированное пространственное строение молекулы кверцетина

Из рис. 1 видно, что расположение атомов в молекуле кверцетина образует практически плоскую структуру. Пространственное строение молекулы рутина является более сложным и объемным, в первую очередь за счет наличия радикала рутинозы. Он размещается в пространстве под углом 117° относительно плоскости остова флавоноидов.

В табл. 1 сравниваются расстояния и углы между атомами этих молекул, рассчитанные методом молекулярной механики в параметризации ММ+. Результаты расчетов позволяют сделать вывод о том, что расстояния между атомами, входящими в фенольные кольца обоих флавоноидов, практически одинаковы. В отличие от этого, значения валентных углов несколько отличаются, что можно объяснить взаимодействием атомов остова рутина с атомами радикала рутинозы.

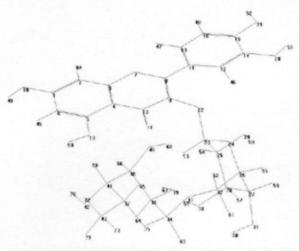


Рис. 2. Оптимизированное строение молекулы рутина

Таблица 1

Межатомные расстояния и валентные углы молекул кверцетина и рутина, рассчитанные методом молекулярной механики

Длина связи (нм) или угол (градусы)	Кверцетин	Рутин
C ₄ -C ₅	0,134	0, 135
C ₃ -C ₇	0,135	0,135
C ₁₀ -C ₁₇	0,121	0,121
C ₈ -C ₁₁	0,134	0,136
$C_1 - C_{23} (C_2 - H_{44})$	0,11	0,11
C _{14 (15)} - C ₂₁	0,136	0,136
C ₂₁ -C _{31 (52)}	0,097	0,097
∠ C ₄ −C ₅ −O ₁₉	122,18	123,17
∠ C ₃ −C ₇ −C ₈	119,45	121,86
$\angle C_2 - O_{28} - H_{30} (C_1 - O_{18} - H_{49})$	107,43	108,6
$\angle C_{14} - O_{21} - H_{51}(C_{15} - O_{21} - H_{52})$	108,08	108,62

В таблице 2 приведены энергетические характеристики молекул кверцетина и рутина, то есть значения общей энергии молекул и ее составляющих: энергий связей, углов, пространственных углов, Ван-дер-Ваальсовых взаимодействий, напряжения связей и электростатических взаимодействий.

Энергетические характеристики молекул кверцетина и рутина

Таблица 2

Энергетические характеристики, ккал/моль	Кверцетин	Рутин
Общая энергия	15,896	42,392
Энергия связей	1,258	2,072
Энергия углов	8,553	18,926
Энергия пространственных углов	-12,848	-0,992
Ван-дер-Ваальсовы взаимодействия	20,579	24,045
Энергия напряжения связей	0,008	0,667
Электростатические взаимодействия	-1,654	-2,327

Анализ данных таблицы 2 показывает, что молекула кверцетина стабильнее молекулы рутина. На это указывают меньшие значения общей энергии и ее составных частей. Важно отметить, что величины энергий связей для обеих молекул близки по значениям, тогда как энергия валентных углов рутина вдвое больше, чем кверцетина. Это подтверждает предположение о том, что наличие радикала рутинозы в молекуле рутина не влияет на расстояния между атомами, но меняет их расположение в пространстве.

Для прогнозирования свойств и реакционной способности биологически активных соединений можно применять квантово-химические представления, учитывающие электростатические (кулонов-

ские) взаимодействия между электронами и ядрами. На данном этапе работы установлена взаимосвязь между электронным строением флавоноидов и их способностью вступать в одноэлектронные реакции со свободными радикалами в соответствии с уравнением:

$$Fl-OH + R' \rightarrow Fl-O' + RH$$
,

где Fl — флавоноид; ОН — гидроксильная группа; R· — свободный радикал.

В связи с этим для молекул кверцетина и рутина в первую очередь важно проанализировать распределение электронных зарядов на атомах, образующих гидроксильные группы.

В таблице 3 представлены результаты квантово-химических полуэмпирических расчетов, проведенных в параметризации РМ3, относительно величин электронных зарядов на некоторых атомах, образующих гидроксильные группы у фенольных колец флавоноидов.

Как свидетельствуют приведенные в таблице данные, в молекуле кверцетина наибольшей является вероятность отщепления протона сначала от атома кислорода в положении O_{19} , затем — O_{28} , O_{21} , O_{18} и в последнюю очередь O_{22} . Об этом свидетельствуют относительно невысокие значения величины электронного заряда на первых четырех атомах кислорода, которые меньше заряда на атоме O_{22} на 22 % для атома O_{19} и на 9 % для атома O_{18} .

Величины электронного заряда (q) на атомах

Таблица 3

Электронный заряд (q)	Кверцетин	Рутин	
O _{28 (18)}	-0,218	-0,226	
H _{30 (49)}	0,203	0,223	
O _{19 (19)}	-0,186	-0,189	
H _{29 (50)}	0,199	0,200	
O _{21 (20)}	-0,219	-0,219	
H _{31 (51)}	0,210	0,209	
O _{22 (21)}	-0,244	-0,240	
H _{32 (52)}	0,208	0,209	
O _{18 (+)}	-0,220	Не существует	
H _{28 (-1}	0,218	Не существует	

В отличие от кверцетина, в молекуле рутина у фенольных колец содержится на одну гидроксильную группу меньше. Вероятность отщепления протонов от существующих гидроксильных групп соответствует такой последовательности: сначала от атома кислорода в положении O_{19} , затем O_{20} , O_{18} и O_{21} . При этом на атоме O_{18} электронный заряд выше, чем для молекулы кверцетина. Образованная связь становится мишенью для улавливания свободных радикалов.

Таким образом, существование меньшего количества гидроксильных групп у фенольных колец в молекуле рутина по сравнению с молекулой кверцетина, а также более низкие значения электронных зарядов на соответствующих атомах свидетельствуют о том, что кверцетин будет быстрее и легче вступать в реакции со свободными радикалами за счет отщепления протонов. Следовательно, расчеты электронного строения молекул двух флавоноидов дали возможность объяснить и подтвердить более высокую антиоксидантную активность кверцетина по сравнению с рутином.

Литература

- 1. Буркерт У., Эллинджер И. Молекулярная механика. М.: Мир, 1986. 364 с.
- 2. Лапин А. А., Бортников М.Ф., Карманов А.П. Антиоксидантные свойства продуктов растительного происхождения // Химия растительного сырья. 2007. № 2. С. 79—83.
 - 3. Соловьев М. Е., Соловьев М. М. Компьютерная химия. М.: СОЛОН-Пресс, 2005. 536 с.