КЛЕВЦОВ П. В., ПЕРЕПЕЛИЦА А. П., ИЩЕНКО В. Н., КЛЕВЦОВА Р. Ф., ГЛИНСКАЯ Л. А., КРУГЛИК А. И., АЛЕКСАНДРОВ К. С., СИМОНОВ М. А.

СИНТЕЗ, КРИСТАЛЛОСТРУКТУРНОЕ И ТЕРМИЧЕСКОЕ ИССЛЕДОВАНИЕ CsLiCrO₄

Синтезированы кристаллы CsLiCrO₄ в двух модификациях: кубические (I) с кристобалитоподобной структурой и моноклинные (II) со структурой, производной от тридимита. Выполнено рентгеноструктурное исследование (автодифрактометр «Синтекс P2₁») фазы II. При ~300 °С кубическая модификация необратимо переходит в ромбическую. В ромбической фазе при +154 °C обнаружен обратимый фазовый переход в моноклинную, которая сохраняется до -170 °C.

Систематические исследования двойных молибдатов и вольфраматов, содержащих два сорта одновалентных катионов, привели к выявлению в структурах соединений CsLiMo(W)O₄ кристобалитового каркаса $[LiMo(W)O_4]_{3\infty}$, «начиненного» крупными катионами Cs^+ [1, 2]. Структура характеризуется пространственной группой $F\bar{4}3m$ и позиционным разупорядочением атомов кислорода. В кристаллах этих соединений обнаружены сегнетоэлектрические фазовые переходы типа порядок-беспорядок, сохраняющие структурный мотив [3, 4]. Это первые представители соединений с общей формулой А[ВТХ₄], обладающие при комнатной температуре структурой кристобалитового типа. При замещении молибдена (вольфрама) на серу и селен соединения (CsLiSO₄ и CsLiSeO₄) кристаллизуются в структуре, представляющей собой трехмерный каркас (типа В в обозначениях [5]) из тетраэдров LiO₄ и SO₄(SeO₄), подобный β-тридимитовому, с расположенными в его пустотах катионами Cs⁺. Известны многочисленные соединения состава А[ВТХ₄], реализующиеся в структурах, производных от β-тридимита, и отличающиеся характером сочленения (ориентацией) ВХ₄- и ТХ₄-тетраэдров в шестичленных кольцах тридимитовой структуры.

В этой связи представлялось интересным синтезировать и изучить двойные хроматы одновалентных элементов A⁺LiCrO₄. В данной работе сообщаются результаты синтеза и исследования рентгеновскими и термическими методами цезий-литиевого хромата CsLiCrO₄.

Синтез двойного хромата и его кристаллизация осуществлены при комнатной температуре испарением насыщенного водного раствора, содержащего простые хроматы Cs₂CrO₄ и Li₂CrO₄ в мольном соотношении 1:1. Получены монокристаллы двоякого габитуса (тетраэдрического и в форме гексагональных призм), характеризующиеся различными рентгеновскими порошкограммами (табл. 1 и 2). По данным инфракрасной спектроскопии (спектрометр UR-20), высокотемпературной дифрактометрпи (аппарат ДРОН-0,5 с приставкой КРВ-1200) и определения потери веса при прокаливании (при 200 °C) обе фазы были найдены безводными. Их одинаковый формульный состав — CsLiCrO₄ — установлен путем химического анализа на щелочные металлы Cs и Li методом пламенной спектрофотометрии и подтвержден рентгеновскими методами.

Тетраэдрические кристаллы (фаза I) отнесены рентгенографически (дифрактометр ДРОН-2, СиК_а-излучение) к структурному типу CsLiMoO₄ [1]. Порошкограмма индицируется в кубической гранецентрированной ячейке с параметром элементарной ячейки a=8,092 Å в рамках ацентричной пр.гр. $T_d^2 - F\bar{4}3m$ (испытания на пьезоэффект дали положительный результат).

Моноклинная симметрия и предварительные значения параметров элементарной ячейки призматических кристаллов (фаза II) определены по рентгенограммам Лауэ и качания (камера РКОП) и уточнены на автодифрактометре «Синтекс P2₁»: пр.гр. C_{2h}⁵, a = 9,744, b = 5,636, c = 8,946 Å, $\gamma = 90,45^{\circ}$. Двойной оси симметрии, проходящей вдоль призмы, отвечает параметр c, отношение же $a : b = 1,729 \sim \sqrt{3}$ свидетельствует о псевдогексагональности кристаллов, что находит отражение в их морфологии. Наличие центра симметрии в

кристаллах подтвердили испытания на пьезоэффект и генерацию второй оптической гармоники. В моноклинной элементарной ячейке, как и в кубической, содержатся четыре формульные единицы CsLiCrO₄.

Тоблино	1	
гаолица	1	

Рентгенографические данные I-CsLiCrO ₄									
hkl	<i>d</i> , Å	I/I _o	hkl	<i>d</i> , Å	I/I _o				
111	4,671	20	420	1,8094	40				
200	4,046	100	422	1,6517	40				
220	2,862	100	511, 333	1,5578	15				
311	2,439	35	440	1,4301	20				
222	2,336	65	531	1,3681	2				
400	2.023	10	620	1,2794	10				
331	1,857	10	622	1,2204	10				

Таблица 2

Рентгенографические данные II-CsLiCrO ₄ *
--

	-				
hkl	d, A	I/I _o	hkl	d, A	I/I _o
110, 200, 110	4,85	35	412	1,992	3
002	4,47	10	322, 214	1,915	2
$\overline{1}11, 201, 111$	4,28	25	501	1,905	15
2 11	3,414	15	1 30	1,845	2
211	3,397	15	130, 420	1,839	3
$\overline{1}12, 202, 112$	3,293	100	$\bar{4}21, \bar{1}31$	1,810	2
301	3,053	15	4 13	1,793	5
$103, \overline{2}12$	2,848	4	413	1,787	5
310, 020, 310	2,817	50	314	1,754	8
311.021	2,696	3	024, 314	1,751	12
311	2,676	4	231	1,724	2
302	2,631	1	<u>422</u> , <u>1</u> 32, 512	1,706	7
121	2,582	3	132	1,704	12
<u>1</u> 13, 203	2,545	3	512, 422	1,698	12
$\overline{2}20$	2,447	7	404, 224	1,647	10
400 220	2,437	20	330	1,631	5
022 312	2,377	20	330	1,620	8
221	2,360	3	215	1,608	3
221	2,346	4	521	1,583	3
$\frac{221}{\overline{2}13}$	2,320	1	521	1,572	4
004	2,236	40	6 11	1,541	2
303	2,199	5	611	1,535	5
4 11	2,176	3	125,006	1,4925	4
$\overline{7}22$	2,147	6	4 31	1,4705	2
402 222	2,136	15	431	1,4611	l
321	2,078	5	<u>1</u> 16, 206	1,4269	7
321	2,059	3	514, 424	1,4197	3
023	2,004	2	620	1,4116	2
$\overline{1}14$ 204	2,033	15	040	1,4086	4
123	2,007	3	620	1,4030	4

123 В 123 В

Для рентгеноструктурного исследования на автодифрактометре «Синтекс P2₁» (МоК_а – излучение, $\theta/2\theta$ -сканирование, maxsin $\theta/\lambda = 0.80$ Å⁻¹) был отснят монокристалл CsLiCrO₄ (фаза II) с линейными размерами $0.30 \times 0.35 \times 0.40$ мм³. После усреднения эквивалентных и

Таблица 3

Координаты базисных атомов и изотропные тепловые параметры в структуре II-CsLiCrO₄

_											
	Атом	x/a			y/b		z/o	:	1	В _{ИЗО}	
-	$\begin{array}{c cccc} Cs & 0.7794 (1) \\ Cr & 0.5749 (1) \\ Li & 0.9118 (8) \\ O (1) & 0.5741 (5) \\ O (2) & 0.4609 (3) \\ O (3) & 0.7265 (3) \\ O (4) & 0.5332 (4) \end{array}$		0,2: 0,7: 0,7: 0,7: 0,9: 0,8: 0,8: 0,4:	349 (1) 597 (1) 536 (14) 521 (7) 542 (6) 424 (7) 976 (5)		0,0022 0,7906 0,6848 0,9722 0,7342 0,7303 0,723	2(1) 5(1) 8(8) 1(4) 2(4) 3(4) 5(4)		2,16 1,12 2,75 3,23 2,80 3,23 2,75		
		۱ ۲		1	(8)		1			Tac	блица 4
Межатомные расстояния (Å) и углы (град) в структуре II-CsLiCrO4											
	φ.			Сг-тетр	аэдр						
	Cr-O(1) -O(3) -O(4) -O(2)	1,624 1,637 1,643 1,646 (1,638)	0(1) 0(2) 0(1) 0(1) , 0(2) 0(3)	-0(2) -0(3) -0(3) -0(4) -0(4) -0(4)	2,658 2,669 2,671 2,675 2,675 2,696 (2,674)		0(2)Cr 0(2)Cr 0(2)Cr 0(1)Cr 0(1)Cr 0(3)Cr	0(1) 0(3) 0(4) 0(4) 0(3) 0(4)	108 108 108 109 109 110 (109	3,7 3,8 3,9 9,9 9,9 9,9 0,6 9,5>	
		Li-тетр	аэдр	·				- 1			
	Li-O(3) -O(1) -O(4) -O(2)	1,91 1,91 1,95 1,95 (1,93)	$\begin{array}{c ccccc} 1,91 & 0(1) - 0 \\ 1,91 & 0(1) - 0 \\ 1,95 & 0(3) - 0 \\ 1,95 & 0(2) - 0 \\ (1,93) & 0(2) - 0 \\ 0(1) - 0 \\ \end{array}$		3,068 3,126 3,135 3,139 3,191 3,235 (3,149)		0(1) Li0(3) 0(2) Li0(4) 0(1) Li0(2) 0(3) Li0(4) 0(2) Li0(3) 0(1) Li0(4)		107,0 107,2 108,1 108,9 111,6 114,1 (109,5)		
	Сs-полиэдр Межкати онные расстояния и углы										
	$\begin{array}{c} \text{Cs-O}(4)'\\ -O(2)n\\ -O(3)'\\ -O(3)bc\\ -O(1)bc\\ -O(1)i\\ -O(2)i\\ -O(2)i\\ -O(1)c\\ -O(2)'\\ -O(1)c\\ -O(2)'\\ -O(3)''\end{array}$	3,001 3,016 3,137 3,326 3,376 3,453 3,469 3,485 3,559 3,702 3,771 3,841		Cs-Cr Cs-Li Cr-Cr Cr-Li CrO(1)Li CrO(3)Li CrO(2)Li CrO(4)Li	3,827 3,735 4,855 3,213 175,4 149,1 130,7 126,9	3,89 3,77 4,90 3,27	94 3,919 70 3,956 67 73 3,416	4,049 4,103 3,531	4,063 4,110	4,089 4,306	

Примечание. Стандартные отклонения для расстояния Cs-O, Cr-O равны 0,004 Å, O-O – 0,006 Å, Li-O – 0,01 Å. Атомы, связанные с базисными трансляциями, центром инверсии, скользящей плоскостью, обозначены буквами *b*, *c*, *i*, *n* соответственно, а связанные винтовой осью 2_1 – штрихами.

исключения слабых с $I < 3\sigma(I)$ рефлексов массив включал 1545 интенсивностей, используемых в дальнейшем при структурных расчетах. Погасание рефлексов с h+k=2n+1 в зоне hk0 и l=2n+1 в зоне 00l однозначно определили пр.гр. $C_{2h}^{5}=P2_{1}/n$, в которых проводили определение и уточнение структуры (использовали комплексы PEHTГEH-75 и CTPУКТУРА [6, 7]). Применяя стандартную методику [8], из рассчитанного трехмерного синтеза функции Патерсона выявили два тяжелых атома: Сs и Cr; из синтезов электронной плотности при R=0,17 определили положения четырех атомов кислорода при R=0,11 – атома лития.

Уточнение позиционных и тепловых параметров в изотропном приближении привело к R=0,066, а учет анизотропии снизил его значения до R=0,043. Заключительные координаты базисных атомов приведены в табл. 3; соответствующие межатомные расстояния и углы – в табл. 4 (характеристики эллипсоидов тепловых колебаний атомов и значения анизотропных тепловых параметров можно получить у авторов).

Рис. 1. Проекция структуры CsLiCrO₄ вдоль [001] Показанны два слоя шестерных колец из Cr⁻ и Li – тетраэдров, между которыми в каналах расположены атомы Cs (заштрихованные кружки)

В структуре CsLiCrO₄ атомы Cr и Li находятся внутри кислородных тетраэдров, которые соединяются друг с другом через общие вершины, образуя трехмерный каркас. CrO₄-тетраэдр деформирован незначительно: расстояния О—О находятся в LoO₄ узких пределах (Δ =0,038Å), а углы О—Cr—O близки к тетраэдрическому (Δ =2°). Крупный 1л0₄-тетраэдр искажен больше: разница в расстояниях О—O равна 0,167 Å, а в углах O—Li—O разброс достигает 7,1°, хотя среднее значение последних также близко к тетраэдрическому — 109,5°.

На рис. 1 изображена структура CsLiCrO₄ в проекции вдоль двойной винтовой оси, где хорошо видны все особенности расположения тетраэдров по слоям, перпендикулярным оси *с*. В каждом слое чередующиеся Cr- п Li-тетраэдры образуют шестерные кольца, в которых вершины трех соседних тетраэдров направлены вверх по оси *c*, а следующих трех — вниз. Чередование вершин записывается как *AAABBB*. Эти же слои можно рассматривать, как состоящие из (параллельных оси *b*) зигзагообразных цепочек одинаково ориентированных тетраэдров, соединяющихся с соседними противоположной ориентации. В выделенных цепочках углы Cr—O—Li минимальны и, следовательно, связи Cr—Li самые короткие - 3,213 и 3,273 Å.

Соседние слои соединяются друг с другом через общие вершины O(1) с образованием четвырных и восьмерных колец (рис. 2). Угол Cr-O(1)-Li равен 175,4 ° и связи Cr- Li в направлении оси *с* самые длинные (3,531 Å).

Рис. 2. Проекция структуры CsLiCrO₄ вдоль [010] Показано создание двух псевдогексагональных слоев через общие вершины O(1) и образование четвертных и восьмерных колец

Атомы Cs располагаются между слоями вблизи двойных винтовых осей 2_1 проходящих в центре больших каналов тетраэдрического каркаса. Для получения изометричного полиэдра в координационную сферу атомов Cs включили 12 атомов O, расстояния до которых монотонно возрастают от 3,001 до 3,841 Å (следующее значение Cs— O равно 4,20 Å). Cs-двенадцативершинники соединяются друг с другом по общим граням, образуя непрерывную колонку в направлении [001].

Исследованная структура CsLiCrO₄ относится к типу *B* тридимитоподобных и близка к описанным ранее структурам ALiSO₄ [9-12], ALiBeF₄ [13] и RbAlSiO₄ [14] (A — NH₄, Rb, Cs). В отличие от тридимитовых структур, в шестерных кольцах которых вершины тетраэдров вдоль гексагональной оси чередуются по закону *ABABAB* (т. е. вершины тетраэдров одного сорта направлены в одну сторону, а соседнего — в противоположную), в семействе тридимитоподобных структур, к которому относится и исследованная, иной закон чередования, приводящий к возникновению четверных и восьмерных колец в каркасе. В результате такой перестройки возникают большие пустоты, способные вместить крупные атомы, в данном случае Cs.

Нагревание кубической фазы CsLiCrO₄ переводит ее при температуре около 300 °C в ромбическую (фаза III) без изменения содержания элементарной ячейки. Параметры ромбической ячейки при 180° С: a = 9,860(3), b = 5,684(1), c = 8,904(2) Å. Этот переход является необратимым: отжиг ромбической фазы при 200 °C более 100 ч не привел к изменению дифракционной картины. При охлаждении до +154 °C ромбическая фаза III переходит в моноклинную II. По-видимому, кубическая фаза метастабильна и не может рассматриваться как низкотемпературная модификация. Косвенным указанием в пользу этого могут служить более низкая плотность кубических кристаллов (3,22 г/см³), чем моноклинных (3,47 г/см³), а также более высокая симметрия, что не характерно для фазовых переходов в соединениях аналогичного состава. Кубические кристаллы образуются на начальной стадии спонтанной кристаллизации в условиях большого пресыщения раствора.

Кристаллографические и некоторые физико-химические характеристики CsLiCrO₄

Таблица 5

Фаза	Параметры элементарной ячейки a, Å b, Å c, Å γ^{o}			z	Вероятная пр.гр	d _х г/см ³	Темпера Тура измерения, °С	Температура перехода, °С	
Ι	8,092(2)				4	F 4 3 <i>m</i>	3,22	20	300
II	9,744(3)	5,636(1)	8,946(3)	90,45(2)	4	$P2_{1}/n$	3,47	20	$(I \rightarrow II)$ 154 $(II \leftrightarrow III)$
	9,67(1)	5,579(6)	8,97(1)	90,2(1)	4	То же	3,53	-170	()
III	9,860(3)	5,684(1)	8,904(2)		4	$Pc2_1n$	3,42	180	660(плавление)

Исследованные методами дифференциального термического анализа (прибор HTP-70) и температурной дифрактометрии в интервале +150-170 °C фазовые превращения в моноклинной модификации не были зафиксированы.

CsLiCrO₄ плавится при 660 °C (±10), при высоких температурах обладает заметной сублимацией. Параметры элементарной ячейки моноклинной фазы, измеренные по порошковой рентгенограмме, записанной при —170 °C (охлаждение образца жидким азотом), и уточненные МНК по программе [15], приведены в табл. 5. При закономерном уменьшении объема ячейки (на 1,5% вследствие уменьшения параметров *a* и *b*) параметр *c* увеличивается, что отражает некоторую деформацию шестичленных колец, приводящую при понижении температуры к увеличению расстояния Cr—Li в направлении [001], т. е. к возрастанию угла Cr—O (1) —Li (см. рис. 2) и, возможно, менее стабильному состоянию.

Таким образом, группа соединений CsLiTO₄ ряда анионообразующих шестивалентных элементов (T=W, Mo, Cr, Se и S) кристаллизуется в двух структурных типах, производных от β-кристобалита (W, Mo) и β-тридимита (S, Se). Хром (VI), выступающий как промежуточный, образует оба типа LiTO₄]-каркасов.

Авторы благодарят И. С. Кабанова за измерения генерации второй гармоники.

Литература

1. Клевцова Р. Ф., Клевцов П. В., Александров К. С. // Докл. АН СССР. 1980. Т. 255. С 1379

2. Okada K., Ossaka J. // Acta cryst. B. 1980. V. 36. P. 657.

3. Aleksandrov K. S.// Phys. status solidi a. 1981. V. 67. P. 377.

4. Мельникова С. В. и др. // ФТТ. 1982. Т. 24. С. 2862.

5.Сандомирский П. А., Белов Н. В. Кристаллохимия смешанных анионных радикалов. М.: Наука, 1984.

6. Андрианов В. И., Сафина 3. Ш., Тарнопольский Б. Л. Рентген-75. Автоматизированная система программ для расшифровки структур кристаллов. Черноголовка: ИХФ АН СССР, 1975.

7. Соловьева Л. П., Овчинников В. Е., Ипатова В. Н., Андрианов В. И. Структура. Система программ для рентгеноструктурных расчетов. М.: Ин-т тектоники и геофиз. ДВНЦ АН СССР, Ин-т кристаллогр. АН СССР, 1981.

8. Борисов С. В. // Кристаллография. 1964. Т. 9. С. 603.

9. Dollase W. // Acta cryst. B. 1969. V. 25. P. 2298.

10. Круглик А. И., Симонов М. А., Александров К. С. // Кристаллография. 1978. Т. 23. С. 494.

11. Круглик А. И., Мисюлъ С. В., Симонов М. А. // Кристаллография, 1979. Т. 24. С. 582.

Круглик А. И., Симонов М. А., Железин Е. Н., Белов Н. В. // Докл. АН СССР.
 1979. Т. 247. С. 1384.
 Le Roy J., Aleonard S. // Acta cryst. В. 1972. V. 28. Р. 1383.
 Klaska R., Jarchow O. // Z. Kristallogr. 1975. В. 142. 8. 225.
 Кирик С. Д., Федоров В. Е. Деп. ВИНИТИ. 1977. № 3196-77.

Институт неорганической химии СО АН СССР

Поступило в редакцию

Киевский технологический институт пищевой промышленности

13.12.1985

Институт физики СО АН СССР

Московский государственный университет им. М. В. Ломоносова