ON A CONVERGENCE CLASS FOR DIRICHLET SERIES

Sumunary

A relation between the maximum of the modulus, the maximal term and coefficients of
Dirichlet series in terms of a convergence class is investigated.

Suppose that A = (A,) is a sequence of positive numbers increasing to +co,
and the Dirichlet series

o
(1) P(s)=ao+ Zan exp (sA,), s=0 +it,

n=1

has an abscissa of absolute convergence o, = A € (—o0, +o0]. We put M (o, F) =
sup{|F (o +it)| : t € R}, 0 < 4, and let p(o, F) = max{|an|exp (o),) : n > 0}
be the maximal term and v(o, F) = max{n : |a,|exp(cA,) = u(o, F)} be the
central index of series (1). :

By Q@(A) we denote the class of positive functions @ unbounded on (—occ, A)
such that the derivative @’ is continuously differentiable, positive and increasing
to +co on (—oc, 4).
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The number In M(o, F)
— In M{o,
Y = et (o
BFl =150
is called ®-type of F. In the case when T¢(F) = 0 for the study of relation
between the growth of M (o, F') and the behaviour of coefficients and exponents

of series (1) we introduce a convergence ®-class by the condition

@ € Q(4),

do < +o0.

A
&' (o) In M(o, F)
(2 e
®2(0)
a0
We establish the relation in two stages: at first we study conditions on a, and
An under which

do < 400,

3) /<I>’ a)ln u(d F)

and afterwards we investigate conditions under which relations (2) and (3) are
equivalent. We remark that (3) implies (2) in view of Cauchy inequality u(o, F') <
Mo, F). Therefore, we need to investigate conditions under which (2) implies

3).
2.

We start from conditions under which (3) holds.

Theorem 1. Suppose that Dirichlet series (1) has an abscissa of absolute con-
vergence o, = A,

lim —ln————A o e QA)
n—oQ 'n lanl
and
1
(4) O<}L<WSH<+OO, o € oo, 4).

L ACHE
In order that (3) holds, it is necessary and in the case when

_Inja,| —Inlan]

Ay, = A; n — oG,
i /\n+1 - /\n /
it Is sufficient that

o0
(5) P k.-

n=ng @’ (..1_ ln _1__>
|an!
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Proof. From (4) it follows that

A
i 1
E/ G))’ ~ h®' (o)

We put
A

@)= [ 5y

z

Then B(o) | Daso T A.
We remark also that from (3) for every £ > 0 and for all ¢ € [0g(€), A) it
follows that

ln w(o, F)
&(0)

(6) >/ (())ln,u(tF)dt>ln,uaF)/

(24

It is well known that

o
ln p(o, F) = In u(og, F) +//\,,(I:F)dm, op <o <A

a0

Therefore,

an gy

A
Clnpe, BT

(o)

s /\,,(U,p)da
w o Blo)

oy

and (3) holds if and only if

A
; )\,,(a,p)da
(M) /_—“_@(a) < +o0.

ao
Let = A0? be the coefficients of the Newton majorant Fi,y, of series (1) and

0 0
0 lnan~lnan+1.

N /\n+l = )‘n
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Since
lim /\1 In I—al—] = A,
n—oo n
then »¢ A n — oo, the functions F and F,,, have the same maximal terms
ulo) = u(cr: FY) = u(o, Finp) and central indexes v(o) = v(o, F) = v(o, Fny) and
lan| < aﬁ for all n. Without loss of generality we suppose that ap = af = 1.
Then 1 1
0
Hy = )\—1— In a—g‘,
and for simplicity we suppose also that %8 > 0p.
It is known that if 52 ; < 30 then for all ¢ € [x9_;, ») the equalities

v(o) = nand pu(o) = anexp (o\,) hold. Therefore,

A
//\U<a F)i) Z/ vl p)@( ) + const

o9 *,,
= Z /\n/ (;E ) + const = Z A (B(2_,) — B(58)) + const

n=1 g n=1
o0
®) = (A= Anc1)B(x3_,) + const.
n=1
Since In @ = —#%_ 1 (An ~ A1) — - ~ 23(A1 — Ao), Ao = 0, then
T 1 A+ 40
9 — == s AL =Ap = An=is
©) Ao a8 A +day 0 mo nT
1
Hence, firstly it follows that :\1~ In— s < x%S_q, and in view of the decrease of B
we obtain "’ "
o8]
10 An — An-1)B In—j=> - A 2 )
0 3o 1)<An“) }: e 1)BOE_)

On the other hand, if H > 1, p = H/(H — 1) > 1 and By(z) = BY?(z) then
Bi(z) = EB(I)UP“‘B’(x), and in view of (4) we have
p

BY(o) = BYa) (@B (@) - 222

A
_ BY/r=2(y) ’ do 1
=@ (‘“x)/kp(:a)“ﬁ)

, B (J;) /Aqw(a)dg _ ) "

- pH(I>
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that is the function B'/? is convex on [oq, A).
Let p>1,¢=

& 1 =00 <a < b< +oo, f be a positive function on (a, b)

such that /7 is convex on (a,b), (A%) be a sequence of positive numbers,

Meay + 0+ ALl

e @bl A== e

and () be a nonincreasing sequence of positive numbers. Then {1]

Zm F(An) <q’°Zun nfle=a).

n==1

J 1
If we put f(z) = B(z), an = #0_, An = /\—ln—0 and g, = 1,n > 1, then in
n n

view of (9) from here we have

o<

(11) Z(An—m <; lo)s Z n = A1) Bl ).

From (8), (10) and (11) it follows that (7) and well then (3) holds if and only if

= 1 1
(12) B B = <+
3 0n =008 (5ingg) < o0

Since jan| < a2 for each Dirichlet series (1), |a,| = a2 provided s, / A, n — oo
and (4) implies
1 < B(z) < 1
H3'(z) — = hd®'(z)’

we obtain from (12) the conclusion of Theorem 1.

3.

In order to establish conditions under which (3) implies (2) one can use differ-
ent methods. We will dwell on two such methods. One of them is based on the
following lemma.

Lemma 1. Suppose that Dirichlet series (1) has an abscissa of absolute conver-
gence o, = A and function f is continuous and increasing to A on (—oo, A). For

o < A we put
o—-1
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and let g be a function continuous on (—o0,+c0) such that g(z) = f~!(z) on
(—oo, A) and if A < +00 then g(z) = A forx > A.
If

- 1, 1 ‘
(13) ;lan]@xﬁ) {/\ng <:\: In m)} < Kp < +00,

t“n
then forallc < A
(14) M(o, F) < Kolp(f(o), F))P + Ko + |ao|.

Lemma 1 is proved in [2] for entire Dirichlet series (i. e. A = +c¢) and in [3]
for the case —oc < A < +00.
For @ € Q(A) let  be an inverse function to ' and

be a function associated with @ in the sense of Newton. Then ¢ is continuously
differentiable and increasing to A on (0, +00) and ¥ is continuously differentiable
and increasing to A on (—o0, A).

Theorem 2. Let A € (—co,+00], © € Q(A), (o) = O(2(¥(0))),0 T A and (4)
holds. Suppose that Dirichlet series (1) has the abscissa of absolute convergence

op = A, i111——1‘<A,n2n0,
An ]an!
and
(15) i]a |exp ¢ A ¥ iln e < +o0.

n=1
Then the relations (2) and (3) are equivalent.
Proof. Since
@"(0)®(0)
(o) = ——+5,
=@y

from (4) we have 0 < h < ¥'(g) < H < +o0c, 0 € [0y, A). We choose in Lemma
1 f(o) =¥ o). Then g(o) = ¥(s) and

plo) = sup {M:—f@

(16) =sup{U(€): oo <t<E<o} < H.

:00§t<0}
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Since (15) implies (13), by Lemma 1 we have (14), i. e. in view of (16)
In M{o,F) < Hln p(97 o), F) + O(1), o T A. Therefore, if (3) holds then

= ¢ + const

(o) In M(o, F) ®(o) In p(¥=4(0), F)
/“ o) <H/ 2(0)

ao

d¥U (o) + const

A
ST (0 )W (1 (0)) ¥(T~1(0)) In (T~ (o), F)
= / 2(5) 52(T-1(0))

, F) d¥~1{o) + const < +oo0,

SHl/(D/(q}—l(g')z

[>4+)
because U'(c) = O(1) and &(¥ " {s)) = O(®(¢)) as ¢ T A. Theorem 2 is proved.
Another metods is based on the following lemma.

Lemma 2 [4]. Suppose that Dirichlet series (1) has an abscissa of absolute
convergence o, = A € (—00,+00| and ® € Q(A). In order that Inp(o, F) < (o)
for all oy < o < A, it is necessary and sufficient that In{a,| < —A,¥{p{\,)) for
alln > ng.

Theorem 3. Let A € (—c0,+o0] and © € Q(A). Suppose that Dirichlet series
(1) has an abscissa of absolute convergence o, = A and there exists a positive
increasing to +0o function v on (—oo, A) such that

A
®’(o) In n(y(o))
(17) — = do < 400, aft) = 1,
/ i e < +e0, AZ
and
(18) > ep{=An LB () + An7 (M) < +o0.
n=1

Then the relations (2) and (3) are equivalent.
Proof. From (6) it follows that In (o, F) < ®(o) for all 09 < ¢ < A and by
Lemma 2 Ina,] < —A,¥(@(A,)) for all n > ng. Therefore,

M(o,F) £ Z lan] exp{Anc} + Z jan|exp{ Ao}

An<y(o) Anz7(o)

plo, Fyn(v@) + D exp{=A¥(p(An)) + Ao}

An27(o)

Sule Fn(v(@) + D exp{=M¥(e(An)) + Ay 00)}:

Ae >(0)

IA



