On the uniform convergence of Fourier series to (ψ, β) -derivatives

Elena Radzievskaya

National University of Food Technologies, Kiev, Ukraine radzlena 58@qmail.com

In terms of the best approximations of a function in the space Lp, the conditions of existence of its (ψ, β) -derivatives and the uniform convergence of Fourier series to them are determined.

Let L_p be a space of measurable 2π -periodic functions f(x) for which $\int_{0}^{2\pi} |f(x)|^p dx < \infty$, 1 and let

$$f \sim \sum_{k=-\infty}^{\infty} \hat{f}_k e^{ikx}$$

be its Fourier series.

Let $\psi(t) > 0$ for t > 1 and let β be any fixed real number. If the series

$$\sum_{k=-\infty}^{\infty} \frac{\hat{f}_k}{\psi(|k|)} e^{i(kx+\beta signk)}$$

is the Fourier series of some summable function, it is called the (ψ, β) derivatives of a function f and is denoted f^{ψ}_{β} . The set of functions that satisfy these conditions is denoted by L^{ψ}_{β} .

If $f \in L^{\psi}_{\beta}$, and $f^{\psi}_{\beta} \in N$ where $N \subset L(0, 2\pi)$ we say that the function belongs to the class $L^{\psi}_{\beta}N$ [1, c. 142–143].

This report is devoted to the determination of a sufficient conditions of existence of the continuous (ψ, β) -derivative of a function f from L_p and the uniform convergence of the Fourier series of the (ψ, β) -derivative in the terms of the best approximations $E_n(f)_p$. Theorem. Let $\psi(t)$ be a positive nonincreasing function which is defined for all $t \ge 1$ and is such that $\psi(2t) \ge c\psi(t)$ for $t \ge 1$ (c is some positive constant) and let the best approximations of the function $f \in L_p$, 1 satisfy the condition

$$\sum_{k=1}^{\infty} \frac{k^{\frac{1}{p}} E_k(f)_p}{\psi(k)k} < \infty.$$

Then, for any real β the function $f \in L_p$ possesses a continuous (ψ, β) -derivative whose Fourier series converges uniformly.

A cknowledgements

1. A. I. Stepanets, Methods of Approximation Theory. I [in Russian], Inst. Math. of the NASU, Kiev (2002),425 p.