ON ESTIMATES OF SINGULAR NUMBERS OF A HILBERT–SCHMIDT INTEGRAL OPERATOR

E. I. Radzievska
Kiev, Ukraine.
radzl58@mail.ru

In $L^2[0; 1]$, let us consider the integral operator

$$(Af)(t) := \int_0^1 a(t, s) f(s) \, ds, \quad f \in L^2,$$

with a Hilbert–Schmidt kernel, i.e., $a(t, s)$ is a square integrable function measurable on $[0; 1] \times [0; 1]$

$$\int_0^1 \int_0^1 |a(t, s)|^2 \, dt \, ds < \infty.$$

As usual, $\lambda_k(A)$ denote the eigenvalues of the operator A enumerated in the order of nonincreasing of their moduli; $s_k(A) = \sqrt{\lambda_k(AA^*)}$ are singular numbers (s-numbers) of the operator A, where A^* is the operator adjoint to A. Consider the case where the domain of values of the operator A belongs to a space of continuous functions. To this end, we introduce the notion of a continuity modulus of order $m = 1, 2, \ldots$ for the kernel $a(t, s)$. For each $0 < \delta < m^{-1}$, we set

$$\omega_m(\delta, a) :=$$

$$\sup_{f \in L^2, \|f\|_2 = 1} \sup_{0 \leq h \leq \delta} \sup_{0 \leq t \leq 1 - hm} \left| \sum_{q=0}^{m} (-1)^q \binom{m}{q} (Af)(t +hq) \right|.$$

(1)

For $\delta > m^{-1}$ we consider that $\omega_m(\delta, a) = \omega_m(m^{-1}, a)$.

Theorem 1. Let the domain of values of the operator A belong to a space of continuous functions, and $m = 2, 3, \ldots$.

Then

$$\sum_{k=r}^{\infty} s_k^2(A) \leq 25 \omega_m^2 \left(\frac{2}{r}, a \right), \quad r = m + 1, m + 2, \ldots$$

This theorem yields the following proposition.

Corollary. *Let the domain of values of the operator A belong to a space of continuous functions, and m = 2, 3, …. Then*

$$s_r(A) \leq \left(\frac{10m}{r} \right)^{\frac{1}{2}} \omega_m \left(\frac{4}{r}, a \right), \quad r = m + 1, m + 2, \ldots$$