CONTENTS

Chemistry

Maralla Yadagiri, Singuru Ramakrishna, Gundeboina Ravi, Palla Suresh, Kurra Sreenu, Dodle Jaya-Prakash and Muga Vithal
Preparation, Characterization and Photocatalytic Studies of Cr₂(MoO₄)₃ and Nitrogen-Doped Cr₂(MoO₄)₃ 391

Maria Smolinska, Olga Korkuna, Teodozia Vrublevska and Grigory Teslyar
Eriochrome Black T - a New Analytical Reagent for Spectrophotometric Determination of Sulphanilamides 401

Ostap Ivashkiv, Piotr Brudziak, Olena Shyshchak, Jacek Namiesnik and Michael Bratychak
Determination of Hydroxy Groups in the Modified Epoxy Oligomers Using IR-Spectroscopy 411

Rohan Ravindranath, Soon Mog So and Jik Chin
Evaluating Binol- Aldehyde as a Chiral Derivatizing Agent for Diamines 417

Luiz F. Rocha, Leonardo C. Ferreira and Maria F. Marques

Oleh Suberlyak, Oleksandr Grytsenko and Victoria Kochubei
The Role of FeSO₄ in the Obtaining of Polyvinylpirroldione Copolymers 429

Halyna Zubyk, Marta Plonska-Brzezinska, Olena Shyshchak, Olena Astakhova and Michael Bratychak
Study of Phenol-Formaldehyde Oligomers Derivatives Structure by IR- and NMR-Spectroscopy 435

Der Liaw, Ying Huang, Cheng Chang, Boris Rumyantsev, Tat'yana Lozinova, Vitaly Zubov, Anatoly Olkhov, Victor Bagratashvili, Gennady Zaikov and Anatoly Ischenko
Photoelectron Properties and Paramagnetism of Polyimides Based on N,N,N',N'-substituted p-Phenlenediamine and Dianhydrides 445

Olga Shevchenko, Anastasiia Schastlyvets, Kateryna Burenkova, Igor Voloshansky
Synthesis and Initiating Activity of Co(II)-Mn(II) Bimetallic Macroinitiators of ß-Diketonate Type 453

Talkybek Jumadilov, Zharylkasyn Abilov, Ruslan Kondaurov, Huangul Himersen, Gaukhar Yeskalieva, Moldir Akylbekova and Auez Akimov
Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel 459

Chemical Technology

Galina Fomenko, Alexander Nosenko, Viktor Goleus, Nataliia Ilchenko and Alexandra Amelina
Glass Formation and Properties of Glasses in MgO-BaO-B₂O₃ System 463

Lyudmila Melnyk, Oleksandr Bessarab, Svitlana Matko and Myroslav Malovanyy
Adsorption of Heavy Metals Ions from Liquid Media by Palygorskite 467

Victor Yavorskiy and Andriy Helesh
Theoretical Analysis of Efficiency of Horizontal Apparatus with Bucket-like Dispersers in the Dust Trapping System 471

Abdulhakim Alamaria and Ghazali Nawawi
Dehydration Pervaporation of Ethyl Acetate-Water Mixture via Sago/PVA Composite Membranes Using Surface Methodology 479

Iryna Kolesnyk, Victoriia Konovalova and Anatoliy Burban
Alginate/κ-Carrageenan Microspheres and their Application for Protein Drugs Controlled Release 485

Dmytro Symak, Volodymyr Atamanyuk and Jaroslav Gumitsky
Analysis of Dissolution Kinetics Based on the Local Isotropic Turbulence Theory 493

Oleg Nagursky, Jaroslav Gumitsky and Victoria Vaschuk
Unsteady Heat Transfer during Encapsulation of Dispersed Materials in Quasi-liquefied State 497

Victor Yavorskiy, Jaroslav Kalymon and Olga Rabai
Kinetics of Ferrum(II) Ions Oxidation by Air Oxygen in Water in Horizontal Absorber with Bucket-like Dispersers 503
Abstract. The process of heavy metals adsorption by natural mineral palygorskite from wastewater and food (apple juice) has been investigated. The purification processes of copper, cadmium, lead, mercury and zinc have been studied. The rational technological parameters of these processes have been determined. The mechanism for heavy metals adsorption from juice by palygorskite has been defined.

Keywords: adsorption, palygorskite, heavy metals, wastewater, apple juice.

1. Introduction

The problems of environment pollution by heavy metals became more urgent with the development of human activity and the spread of pollution in the hydrosphere and lithosphere.

The purification of wastewater with the aim of prevention of the hydrosphere contamination by heavy metals is very important. It is even more important to clean drinking water and food, because in case of of these products consumption a direct threat to human health is created. This report is dedicated to investigation of heavy metals removal from wastewater and contaminated fruit juice.

Contaminated with heavy metals wastewater is formed as a result of human activities. While getting into the environment, it causes pollution of the hydrosphere and soil, and getting into drinking water and food is transferred further to animals and humans. Existing methods of heavy metals removal from wastewater do not provide the required degree of purification; therefore we investigated the possibility to treat such wastewater with natural sorbents, including palygorskite.

In this regard, important challenge faced by the food industry is to provide the population with high-quality products and ecologically safe beverages that meet the state standards of Ukraine.

Fruit and berry juices, including apple juice, are source of vitamins (C, D, E, B6, B2, B1, PP, carotene, folic and pantothenic acids), pectin substances, valuable micro-elements, salts of potassium, calcium, copper, iron, magnesium sodium and organic acids [1, 2]. However, impurities harmful for health of the population, including heavy metal ions, could be found in the contents of this product.

Nowadays for the purpose of demetallization the canning industry applies chemical methods using silicon dioxide, potassium ferrocyanide (PF), citric acid and disodium dihydrogen ethylenediaminetetraacetate (Trilon B), which have several disadvantages, including: toxic reagents, multi-stage treatment, the probability of repeated feculence, changes in juice pH during process of its purification. The application of chemical methods to remove heavy metals from apple juice is undesirable, especially in the production of juices for infant nutrition [3, 4].

With the building of settlements, the problem of treatment of domestic and industrial effluents from the pollutants requires finding and implementing new effective solutions. One of these solutions is the use for sewage treatment of disperse natural sorbents (zeolites, bentonit, palygorskite, glauconit), which stocks a large number of mineral resources in the bowels of Ukraine. This report presents data about using palygorskite as a sorbent.

In the authors’ opinion, one of the most effective ways to improve the ecological safety of apple juice is additional adsorptive purification of semi-finished juice from heavy metal ions. For this purpose the authors have used palygorskite from the Cherkassy deposit as an adsorbent, which has layered and banded structure and
belongs to minerals with rigid crystal grid. Previous studies proved its environmental safety and high adsorption properties with regard to pectin substances and harmful microorganisms [5, 6]. Palygorskite has high specific surface area, which defines large aggregate stability and adhesion ability with respect to juice that in turn prevents repeated feculence of the finished beverage and deterioration of its quality.

2. Experimental

In this study the palygorskite of the Dashava deposit (Cherkasy region) was used.

2.1. Wastewater Treatment

We studied the effectiveness of wastewater treatment from the ions of lead, cadmium and copper. The mineral was sieved and the fraction with particles size of 1.5–2 mm was selected. The concentration of palygorskite in the synthetic wastewater was 5 wt%. The initial concentration of metals in synthetic sewage was selected in such way that after obtaining the equilibrium concentrations the isotherms could be built correctly. The experiments were carried out in a stirred reactor, thermostated at 298 K, with a contact time that allowed reaching the equilibrium state. The concentration of metals was determined by the methods of solid-phase spectrophotometry (SPS) [10] and atomic absorption spectroscopy (AAS) [11].

2.2. Apple Juice Treatment

The apple juice was treated by palygorskite (the fraction of 3.0–2.0 mm) which was thermoactivated at 453–463 K for 1.5 h. Palygorskite in amount of 2–5 wt % was added to the apple juice heated to 333–343 K under constant stirring for 20–40 min. The presented technological parameters were determined as the best ones on the basis of previous studies [9]. The resulting mixture was filtered and contents of Cu(II), Pb(II), Cd(II), Zn(II) and Hg(II) were determined in the filtrate by the methods of solid-phase spectrophotometry (SPS) [10] and atomic absorption spectroscopy (AAS) [11] with the help of S-115-M1 device. Discrepancy between the results obtained the two methods was 2–5 %, that demonstrates high precision of each method.

3. Results and Discussion

3.1. Wastewater Treatment

Fig. 1 shows sorption isotherms of Pb^{2+}, Cd^{2+} and Cu^{2+} ions from the solutions with the same initial concentration.

![Fig. 1. Isotherms of copper, cadmium and lead ions adsorption by palygorskite at 298 K](image)

The position of the curves shows the highest cleaning efficiency of solutions from Pb^{2+} ion, then Cd^{2+} ion, and the least efficiency – from Cu^{2+} ion. The received experimental data are in a good agreement with the data of other researchers [7, 8]. Based on these studies, we can assert that the selectivity row concerning the removal of the studied cations from the solutions using palygorskite has the form of Pb(II) > Cu(II) > Cd(II).

3.2. Apple Juice Treatment

The content of heavy metals in the control sample (untreated apple juice):

- Cu(II) = 4.5 mg/dm^3 (Maximum Permissible Concentrations, MPC = 5.0 mg/dm^3)
- Pb(II) = 0.52 mg/dm^3 (MPC = 0.3 mg/dm^3)
- Cd(II) = 0.04 mg/dm^3 (MPC = 0.02 mg/dm^3)
- Zn(II) = 14.7 mg/dm^3 (MPC = 10.0 mg/dm^3)
- Hg(II) = 0.038 mg/dm^3 (MPC = 0.01 mg/dm^3).

Adsorption capacity of the natural minerals with regard to adsorbing heavy metals from the apple juice has been estimated by the purification effect, calculated according to the formula:

$$E = \frac{100 \cdot (K_1 - K_2)}{K_1}$$

where K_1 and K_2 – quantities of the polluter in untreated juice and the juice treated by the adsorbent, respectively.

The obtained results are represented in Figs. 2–6. It follows from Fig. 2 that the effect of apple juice purification from copper in the experimental samples is growing rapidly during the first 20 min and stays within the range of 26–34 % with all concentrations of the adsorbent. During the juice treatment the copper removal still continues for the next 10 min, but then slows down.

The highest effect of juice purification from copper ions is observed in the samples with the concentration of
the adsorbent being 5.0 wt % and constitutes 37.8 % with a duration of processing attaining 30 min.

The nature of curves which describe the removal of cadmium ions from the apple juice (Fig. 3) varies depending on the duration of treatment. During the first 20 min the content of cadmium ions is reduced by 39–50 %, depending on the palygorskite concentration. This tendency of decrease in harmful impurities content also remains when the duration of treatment is increased, reaching the maximum level of purification effect – 61–62 % (for the adsorbent concentration of 3.3 and 5.0 wt %, with the treatment duration of 30 min). Further interaction between the adsorbent and apple juice is not feasible. Taking into account that the obtained results of the purification effect are almost identical while the concentration of the adsorbent in juice:palygorskite mixture is different, it is feasible to recommend commercial introduction of the adsorbent content being 3.3 wt %.

Analyzing data from Fig. 4, it is possible to state that adsorption of zinc ions from the apple juice is more effective when the palygorskite concentration is 5.0 wt % and treatment duration is 30–40 min. Effect of juice purification constitutes 36–38 %.

It follows from Fig. 5 that mercury ions are better adsorbed from the apple juice when adsorbent concentration in the mixture is 3.3–5.0 wt % with treatment duration of 30 min, thus attaining the effect of purification at the level of 73–75 %. To save palygorskite, it is feasible to recommend commercial introduction of palygorskite with the concentration of 3.3 wt % and treatment duration of 30 min. When using palygorskite with the concentration of 2.0 and 2.5 wt % during 40 min of interaction the effect of purification from mercury ions attains only 38–40 %.

The outcomes of the research, presented in Fig. 6, give grounds for conclusion that with duration of interaction between the juice and the adsorbent being 30 min the effect of apple juice purification by palygorskite from lead ions is the following: 35.5 % (with the adsorbent content of 5.0 wt %); 34.5 % (with palygorskite concentration of 3.3 wt %); 32.5 and 30.5 % (when the adsorbent content in the mixture is 2.5 and 2.0 wt %, respectively).
The mechanism of heavy metal ions adsorption can be explained by the structure of palygorskite surface which contains active centers due to nonstoichiometric isomorphism and broken links of O–Si–O at the edges and ends of the crystals. The number of these centers during mechanical dispersion of palygorskite under humid condition sharply increases as a result of large number of chips and defects on the surface. Edges of palygorskite crystals are saturated by homogeneous OH-groups and that increases its total surface energy.

![Fig. 6. Effect of apple juice purification from lead ions by palygorskite](image)

Fig. 6. Effect of apple juice purification from lead ions by palygorskite

4. Conclusions

The nature of adsorption isotherms in the case of wastewater treatment by palygorskite from ions of copper, lead and cadmium was found.

The efficiency of adsorption purification of the apple juice from the heavy metals ions with the help of palygorskite has been proved. It has been determined that the selectivity row concerning the removal of the studied cations from the solutions with the use of palygorskite has the form of Pb(II) > Cu(II) > Cd(II).

As the result of the research the authors have established the following effect of apple juice purification by palygorskite: from copper ions 27–38 %; cadmium 46–62 %; lead 30–36%; mercury 73–75 % and zinc 36–38 %.

To improve ecological safety of the juice it should be recommended to introduce the following rational technological parameters of apple juice treatment by palygorskite into the industry: sorbent concentration in the juice:palygorskite mixture is 3.5 wt % with the duration of interaction constituting 30 min.

References

Advance in Petroleum and Gas Industry and Petrochemistry (APGIP-8)

Dear Colleagues,

We are happy to invite you to the 8th International Scientific-Technical Conference "Advance in Petroleum and Gas Industry and Petrochemistry" (APGIP-8), to be held in Lviv Polytechnic National University (Lviv, Ukraine) on May 16-21, 2016.

THE CONFERENCE'S TOPICS ARE:

1. Oil and gas processing
2. Petrochemistry and coal chemistry
3. Chemmotology of lubricants and technical liquids
4. Organic synthesis products, polymeric materials and composites
5. Ecological aspects of refineries

You can find the detailed information about the venue and the conference organization on the website, http://apgip.org.ua/

We are looking forward to hearing from you and meeting you in Lviv

Best regards,
Michael Bratychak,
Prof., Dr of Chem Sci., Academician UPGA
Head of Dpt of Chemistry and Technology of Petroleum
Lviv Polytechnic National University
12, S. Bandery str., Lviv, 79013, Ukraine