XVI Polish–Ukrainian Symposium Theoretical and Experimental Studies of Interfacial Phenomena and Their Technological Applications

ABSTRACTS

August 28-31, 2018 Lublin, Poland

Ministerstwo Nauki i Szkolnictwa Wyższego

Organizacja konferencji: XVI Polish-Ukrainian Symposium on Theoretical and Experimental Studies of Interfacial Phenomena and Their Technological Applications - zadanie finansowane w ramach umowy 515/P-DUN/2018 ze środków Ministra Nauki i Szkolnictwa Wyższego przeznaczonych na działalność upowszechniającą naukę

Edited by: E. V. Aksenenko, R. Leboda, B. Charmas and Yu. I. Tarasevich

Scientific Reviewer: J. Narkiewicz-Michałek

ISBN 978-83-60988-26-8

© Faculty of Chemistry UMCS Printed by Bema Graphics S. C. - https://www.bema24.pl

Lublin 2018

Effect of catalyst composition - (In, Fe, Co) oxides based on Al₂O₃ and ZSM-5 on their activity in propane dehydrogenation with CO₂, N₂O M.R. Kantserova, T.M. Boichuk, S.M. Orlyk

L.V. Pisarzevskiy Institute of Physical Chemistry NASU, 32 Nauku Avenue, Kyiv 03028, Ukraine, mkantserova@ukr.net

Propylene is the most important olefin with an annual production of roughly 8×10^7 t. A great deal of attention has been paid to the on-purpose propylene production technology, such as propane dehydrogenation in the presence of mild oxidants CO₂ and N₂O (PODH-CO₂, N₂O), due to their potential to make-up the shortfall of propylene supply left by conventional steam cracking of hydrocarbons where propylene is produced as a byproduct of ethylene [1].

The paper presents results on the effect of support and active component nature as well as the preparation method of oxide catalysts on their activity (C₃H₈ conversion, selectivity to C₃H₆) in the oxidative dehydrogenation of propane to propylene: In₂O₃-Al₂O₃ (YSZ) for PODH-CO₂ and Fe₂O₃ (Co₂O₃)/H-ZSM-5 for PODH-N₂O.

Data on porous structure of alumina based catalysts and their activity in the PODH-CO₂ are listed in the table below. Hydrothermal treatment of the catalyst $In_2O_3-Al_2O_3(HT)$ synthesized by coprecipitation of indium and aluminum nitrates leads to increase of specific surface (SBET) mesoporous structure, that results to higher propylene selectivity (SC3H6) with the same propane conversion (X_{C3H8}) as compared to the sample coprecipitated without HT – In₂O₃-Al₂O₃ and the catalysts prepared by mechanical mixing of indium and aluminum nitrates In_2O_3 -Al₂O₃ (MM) and by impregnation of alumina with indium nitrate In_2O_3/Al_2O_3 . The mesopores improve the catalysts activity due to the better transport of the reactant and product molecules in PODH-CO₂ [2].

Catalyst	Sbet,	Total pore	Micropore	Mesopore	Хсзня,	Sc3H6,
	m^2/g	volume,	volume,	diameter,	%	%
		cm ³ /g	cm^3/g	nm		
$In_2O_3-Al_2O_3$ (HT)	176	0.49	0.0012	12.385	8	51
$In_2O_3-Al_2O_3$	142	0.3034	0.0026	12.476	11	25
$In_2O_3-Al_2O_3$ (MM)	72	0.1055	0.00017	5.4416	13	26
In_2O_3/Al_2O_3	83	0.21	0.048	7.1	11	32

Porous structure (N₂ adsorption) and activity of In₂O₃-Al₂O₃ catalysts

The catalyst supported on Y- stabilized zirconia In_2O_3/YSZ (S_{BET} = 50 M^2/Γ) exhibits higher C₃H₈ conversion (23%) and the same selectivity to propylene (32%) in the PODH-CO₂ compared to In₂O₃/Al₂O₃. This could be attributed to the higher activity of zirconia support compared to alumina as was shown for ethane dehydrogenation to ethylene with CO_2 [3].

In PODH-N₂O over Fe₂O₃/H-ZSM5 catalyst the higher activity ($X_{C3H8} = 53\%$), $S_{C3H6} = 21\%$) is achieved at the temperature 400 °C. In the presence of Co₂O₃/H-ZSM5 catalyst the $X_{C3H8} = 55\%$ and $S_{C3H6} = 31\%$ are achieved at the higher temperature, 600 °C.

Thus, the activity of the catalysts in PODH-CO₂, N₂O depends on the nature of both the support (Al₂O₃, YSZ) and the active component (Fe₂O₃, Co₂O₃).

I. Amghizar, L.A. Vandewalle, K.M. Van Geem et al., Engineering 3(2017)171. 1.

Y. Xie, W. Hua, Y. Yue et al., Chin. J. Chem. 28(2010)1559. 2.

K. Nakagawa, C. Kajita, K. Okumura et al., J. Catal. 93(2001)87. 3.