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Abstract: QSAR analysis of a 5143 compounds set of previously synthesized compounds tested against multi-drug resistant (MDR) 

clinical isolate Escherichia coli strains was done by using Online Chemical Modeling Environment (OCHEM).The predictive ability of the 

regression models was tested through cross-validation, giving coefficient of determination q2 = 0.72-0.8. The validation of the models 

using an external test set proved that the models can be used to predict the activity of newly designed compounds with reasonable accuracy 

within the applicability domain (q2 = 0.74-0.8). The models were applied to screen a virtual chemical library of cytisine derivatives, which 

was designed to have antibacterial activity. The QSAR modeling results allowed to identify a number of cytisine derivatives as effective 

antibacterial agents against antibiotic-resistant E. coli strains. Seven compounds were selected for synthesis and biological testing. In vitro 

investigation of the selected cytisine derivatives have shown that all studied compounds are potential antibacterial agents against MDR  

E. coli strains.  
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Introduction  

In modern conditions, when the therapeutic effectiveness 

of known antibiotics becomes limited due to the growth of 

resistance of pathogenic bacteria, research aimed at the 

search and development of new antibacterial drugs is of 

particular importance [1, 2]. Modern in silico and in vitro 

screening methods promise the successful discovery of new 

biologically active compounds, including the antibacterial 

type of action, but their further clinical testing can be quite 

long. 

Therefore, one approach to the problem decision of new 

antibiotics is the so-called repurposing of known chemical 

compounds, which have already demonstrated, along with  
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the main activity, a wide range of pharmacological 

effects [3, 4]. Screening of such compounds can be one 

effective way to detect novel antibacterials.  

It is known that natural products as well as their 

derivatives play a significant role in the discovery of new 

biologically active compounds in the different areas of the 

lifetime especially in the pharmacology due to a wide range 

of their biological properties. They demonstrate the 

сholinolitic, nootropic, antiviral, anticancer, hemostatic, 

anti-inflammatory, antiarrhythmic and antioxidant and 

cytotoxic activity [5, 6]. In the small number of studies 

carried out to date, such compounds have shown promise in 

treating bacterial infections.  

Cytisine is one of the most promising in terms of 

possible modification and creation of new biologically 

active substances [7, 8]. Chemical modifications of cytisine 

have large potential prospects. Among the various 

derivatives of cytisine, compounds are constantly found 

with other types of biological activity that are not 

characteristic of itself (antispasmodic, antiarrhythmic, 

hepatoprotective, analgesic, cholinergic, insecticidal, 

antioxidant, etc.), which attracts attention and encourages 

the synthesis and study of its new derivatives [9, 10]. Small 

© Metelytsia L. O. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
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doses of cytisine strongly arouse breathing and increase 

blood pressure. In the form of a 1.5% aqueous solution 

(Cityton), the alkaloid is used in medicine in cases of 

asphyxia and intoxication. Currently, more than 1000 

cytisine derivatives of various structures are known, 

methods of their synthesis are described and 

pharmacological activity being studied. 

The current paper presents the results of the study of 

cytisine derivatives as antibacterials by QSAR method and 

experimental testing against antibiotic-resistant E. coli 

strains. 

Results and Discussion 

Chemistry 

Synthesis of cytisine derivatives (Figure 1) was achieved 

by linking of the alkaloid with chromone or 2H-benzofuran-

3-one derivatives using methylene, ethylene or  

 

1,3-propylene linker. Synthesis of desired isoflavone 

derivative 1a [11], isoxazole 2 [12] or pyrazole 3 [13] was 

reported early.  

Chromone-cytisine hybrid 1b was synthesized by 

alkylation of 2,3-dimethylchromone (4a) [14] with 

epichlorohydrin in N,N-dimethylacetamide in presence of 

K2CO3 with subsequent regioselective ring-opening reaction 

of epoxide 5a with cytisine. The similar aurone derivative 

1c [15] was synthesized starting from aurone 4c using 

described above procedure (Scheme 1).  

Mannich reaction of (2Z)-6-hydroxy-2-(pyridin-3-

ylmethylene)-2,3-dihydro-1-benzofuran-3-one (4c) [16] or 

4’-chloro-7-hydroxy-5-methoxyisoflavone (4d) [17] with 

cytisine and paraformaldehyde in presence of  

4-(dimenthylamino)pyridine (DMAP) led to formation of 

flavonoid-cytisine hybrids 6a,b containing methylene group 

as linker between flavonoid and alkaloid moeties (Scheme 

2).  

 

Figure 1. Structures of cytisine derivatives 1a, 2, and 3. 

 

Scheme 1. Reagents and conditions: a) epichlorohydrin, K2CO3, N,N-dimethylacetamide, 65-70 °C, 5-10 h; b) cytisine, MeCN, Bu4N+I-, 
80 °C 10-12 h. 
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Scheme 2. Reagents and conditions: a) cytisine, (CH2O)n, DMAP, i-PrOH, 80 °C, 10-12 h. 

 

QSAR modeling  

The initial dataset of 5143 compounds with activity 

against E. coli was split by chance into training (3780) and 

test (1363) sets. The regression models built by the Trans-

CNN [18], ASNN [19], and RFR [20] methods (see Table 

1) calculated the best performances. For this analysis  

E-state [21], ALOGPS [22], CDK2 [23], descriptors were 

included in the best models for all methods. The results are 

summarized in Table 1 and the performances of individual 

models are shown in Figure S1 of the Supplementary 

materials. 

The q2 values were 0.72-0.8 and 0.74-0.8 for training and 

test sets, respectively. Other statistical parameters of the 

models are summarized in Table 1 as well as in Figure S1 

of the Supplementary materials. A consensus model, which 

is an average of all three models, obtained the best 

performance. It was used to provide a quantitative 

evaluation of activity of compounds against E. coli as 

described in the Experimental sections. The variances of 

individual predictions of the consensus model were used to 

calibrate the prediction errors and estimate their 

applicability domain [24]. 

Evaluation activity of new compounds  

A virtual database of drug-like cytisine derivatives was 

generated based on available synthetic blocks and reactions. 

It included 26 compounds with different substitution 

patterns (see Supplementary materials, Table S1). These 

compounds were screened using the consensus model 

against E. coli. The 11 compounds predicted as most active 

within the applicability domain (i.e., compounds with MIC 

< 50µM) were selected for further evaluation (see also 

Supplementary materials, Table S1). The next analysis was 

to examine the toxic effects (mutagenicity, 

tumorigenicity, irritation and reproductive 

effectiveness) of the studied compounds using the 

DataWarrior 5.5 program [25]. As a result of this 

analysis, only 7 compounds were selected for synthesis 

and testing. The synthetic feasibility of the compounds was 

evaluated by organic chemists, and all seven compounds 

were synthesized and tested for their antibacterial 

activity against E. coli. (see Table 2 and Table S1, in 

Supplementary materials). 

Table 1. Statistical coefficients of the regression models. 

Method Training Seta Test Seta 

R2 q2 RMSE R2 q2 RMSE 

Trans-CNN 0.80 ± 0.01 0.80 ± 0.01 0.48 ± 0.01 0.8 ± 0.02 0.8 ± 0.02 0.48 ± 0.02 

ASNNb 0.73 ± 0.01 0.72 ± 0.01 0.58 ± 0.01 0.74 ± 0.02 0.74 ± 0.02 0.57 ± 0.03 

RFRb 0.76 ± 0.01 0.75 ± 0.01 0.55 ± 0.01 0.78 ± 0.02 0.77 ± 0.02 0.53 ± 0.02 

Consensusc 
0.79 ± 0.01 0.79 ± 0.01 0.34 ± 0.01 0.80 ± 0.02 0.79 ± 0.01 0.33 ± 0.01 

aThe training and test sets included 3780 and 1363 molecules, respectively. The cross-validation results are reported for the training set;  
bASNN and RFR models developed by using E-state, ALOGPS and CDK2 descriptors;  
cConsensus model was built by averaging outputs of all three models.  

R2 – square of correlation coefficient; q2 – coefficient of determination; RMSE – Root Mean Squared Error. 
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Biology testing  

In vitro antimicrobial activity results by measuring the 

zone diameter of growth inhibition of studied cytisine 

derivatives tested against pathogenic E. coli strains are 

shown in Table 2. 

Table 2. In vitro activity of cytisine derivatives against  

E. coli strains by the diameter of growth inhibition zones. 

Compd 

Zone diameter of growth inhibition of  

E. coli strains, mm 

E. coli 

ATCCa 

E. coli 

CRBRb 

E. coli 

MDRc 

1a 16 14 8 

1b 18 16 16 

1с 17 17 10 

2 15 13 na 

3 19 15 10 

6a 14 17 na 

6b 18 15 9 

na - no activity.  
aAmerican Type Culture Collection (strain 25922).  
bCarbenicillin resistant clinical isolate of hemolytic E. coli strain. 
cAmpicillin, Ceftazidime, Ofloxacin, Kanamycin, Ceftriaxone resistant  

E. coli clinical isolate. 

The results presented in Table 1 show that all studied 

cytisine derivatives exhibited antibacterial activity against 

E. coli ATCC and E. coli CRBR strains with diameters of 

inhibition zones in the range of 13-19 mm. MDR E. coli 

strain has demonstrated the least sensitivity to all 

compounds (except compound 1b with inhibition zone of 

16 mm). 

Thus it is worth to note the activity of compound 1b 

which showed high antibacterial properties against all  

E. coli strains. Moreover compounds 1c, 3, and 6b 

possessed the high antibacterial effect against E. coli ATCC 

and E. coli CRBR strains. 

Conclusions 

A number of predictive regression models based on 

different machine learning techniques were built using the 

OCHEM platform. The created models demonstrated good 

stability, robustness, and predictive power. Our results 

demonstrated that designed and synthesized seven 

compounds were found to be active against the E. coli 

ATCC and E. coli CRBR strains. These compounds can be 

perspective antibacterial against MDR E. coli clinical 

isolate due to future structural optimization.  

 

 

Experimental section 

Data 

The data for our analysis were obtained from multiple 

publications and uploaded into the On-line Chemical 

Database and Modeling Environment (OCHEM) [26].The 

structure of compounds, their antibacterial activity and the 

literary source of all data are freely available on the 

OCHEM website. The initial dataset of 5143 consisted of 

diverse chemical series with minimum inhibitory 

concentration (MIC) values of the molecules ranging from 

1.94 nM to 260 mM against the E. coli ATCC 25922 strain. 

MICs were converted into log(1/MIC) values and were used 

as the target variable to develop regression models. 

Machine-learning methods  

Well-known machine-learning methods such as 

Transformer Convolutional Neural Network (Trans-CNN) 

[18], Associative Neural Networks (ASNNs) [19] and 

Random Forest (RFR) [20] were used to build QSAR 

models. 

Transformer Convolutional Neural Network (Trans-

CNN). The Trans-CNN method uses the internal 

representation of molecules based on their SMILES 

notation for extracting information-rich real-value 

embedding during the encoding process and uses them for 

further QSAR-oriented blocks to model biological activity 

[18]. The Transformer-CNN architecture usually requires a 

few tens iterations to converge for new tasks. The method 

developed predicts the endpoint based on an average of 

individual prognosis for a batch of augmented SMILES 

belonging to the same molecule. The deviation within the 

batch can serve as a measure of a confidence interval of the 

prognosis, whereas the possibility to canonize SMILES can 

be used for deriving applicability domains of models. 

Associative Neural Network (ASNN). ASNN represents a 

combination of an ensemble of the Feed-Forward 

Backpropagation Neural Networks and the k-Nearest 

Neighbors (kNN) method [19]. While neural networks build 

an ensemble of global models, kNN provides a local 

correction of the global model set. This combination 

corrects the bias of the neural network ensemble and 

increases its accuracy. The ASNN was trained by 

SuperSAB [27]. The number of input neurons corresponded 

to the amount of analyzed descriptors. The neural network 

weight coefficients were initialized with random values 

within [-0.5; +0.5] for each network in the ensemble. The 

bias neuron was also presented in both the input and hidden 

layer of nodes. The ensemble includes 100 neural networks, 

which were developed using the default parameters 

provided by OCHEM. 

Random Forest (RFR). The random forest is a recursive 

partition ensemble method consisting of a set of decision 

trees, each of which is built using a bootstrap replica of the 

training set and randomly selected subsets of descriptors. 

The random forest makes predictions by majority votes of 

the individual trees. Random Forest calculates predictions 

by using a majority vote of the individual trees. This is a 
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high-dimensional non-parametric method that operates 

quickly on large datasets [20]. 

Descriprors.The OCHEM supports multiple software 

packages for calculation of diverse molecular descriptors. In 

this study, we used E-state indices [21], AlogPS [22] and 

CDK2 [16] packages, which were frequently top-performing 

descriptors according to our previous studies. The electro-

topological state indices are 2D descriptors that combine both 

electronic and topological characteristics of the analyzed 

compounds [21]. AlogPS estimates lipophilicity and 

solubility of chemical compounds while electrotopological 

descriptors describe their electronic and topological 

characteristics [22]. CDK descriptors (3D) are calculated by 

the CDK Descriptors Engine and include 204 molecular 

descriptors such as topological, geometrical, constitutional, 

electronic, and hybrid descriptors [23]. 

Descriptor preprocessing. The unsupervised filtering of 

descriptors was used. Descriptors with fewer than two unique 

variables or with a coefficient of variance, less than 0.01 were 

excluded. Moreover, descriptors with a pairwise non-

parametric Pearson’s correlation coefficient R > 0.95 were 

grouped. Additionally, the Unsupervised Forward Selection 

(UFS) method [28] was used to select a representative non-

redundant set for model development. 

Model validation. Two validation protocols were used. 

First of all, the initial data were split by chance into training 

and test sets. For the training set five-fold cross-validation 

with variable selection in each step of the analysis was used 

to estimate accuracy of models for the training set [29]. To 

avoid incorrect estimation of the models due to over-fitting 

by the variable selection, the OCHEM repeats the cross-

validation step for all steps of model development. 

Estimation of prediction accuracy. The OCHEM estimates 

the applicability domain and the accuracy for each prediction 

[24]. We used two criteria to access the goodness of fitting: 

the squared correlation coefficient R2 and the coefficient of 

determination q2. In addition, we used root mean square 

error (RMSE) and the Mean Absolute Error (MAE) 

statistics to estimate the errors in predictions [26]. A 

detailed description of used machine-learning methods, all 

selected descriptors, and validation procedures can be found 

in the OCHEM manual [30]. 

Chemistry 

1H spectra were recorded on Varian 400 (400 MHz) 

spectrometers in CDCl3 [residual CHCl3 (δH = 7.26 ppm) as 

internal standard] Melting points were determined in open 

capillary tubes using Buchi B-535 apparatus and were 

uncorrected. Mass spectra were obtained using an Agilent 

1100 spectrometer using APCI (atmospheric-pressure 

chemical ionization). 

2,3-Dimethyl-7-(oxiran-2-ylmethoxy)-4H-chromen-4-one 

(5a) synthesized as previously was described procedure 

[31].  

Yield 73%; mp 112-114 °C. 1H NMR (400 MHz, CDCl3) 

δ 8.10 (d, J 8.9 Hz, 1H), 6.95 (dd, J 8.9, 2.4 Hz, 1H), 6.80 

(d, J 2.4 Hz, 1H), 4.34 (dd, J 11.1, 2.9 Hz, 1H), 4.00 (dd, 

J 11.1, 5.9 Hz, 1H), 3.44-3.34 (m, 1H), 2.95 (dd, J 4.9, 4.1 

Hz, 1H), 2.80 (dd, J 4.9, 2.6 Hz, 1H), 2.39 (s, 3H), 2.04 (s, 

3H). LC/MS (APCI) m/z 247.0 [M+H]+. Anal. calcld. for 

C14H14O4: C, 68.28; H. 5.73. Found: C, 68.53; H, 5.99. 

(2Z)-2-(3,4-Dimethoxybenzylidene)-6-(oxiran-2-ylmetho-

xy)-1-benzofuran-3(2H)-one (5b) synthesized as previously 

was described procedure [31].  

Yield 81%; mp 165-167 °C. 1H NMR (400 MHz, CDCl3) 

δ 7.70 (d, J 8.9 Hz, 1H), 7.50-7.43 (m, 2H), 6.93 (d, 

J 8.3 Hz, 1H), 6.79 (s, 1H), 6.77-6.75 (m, 2H), 4.39 (dd, 

J 11.1, 2.8 Hz, 1H), 4.03 (dd, J 11.1, 5.9 Hz, 1H), 3.97 (s, 

3H), 3.94 (s, 3H), 3.44-3.38 (m, 1H), 2.98-2.92 (m, 1H), 

2.80 (dd, J 4.8, 2.6 Hz, 1H). LC/MS (APCI) m/z 335.2 

[M+H]+. Anal. calcld. for C20H18O6: C, 67.79; H, 5.12. 

Found: C, 67.53; H, 5.40. 

(1S,5R)-3-{3-[(2,3-Dimethyl-4-oxo-4H-chromen-7-yl)-

oxy]-2-hydroxypropyl}-1,2,3,4,5,6-hexahydro-8H-1,5-me-

thanopyrido[1,2-a][1,5]diazocin-8-one (1b) synthesized as 

previously was described procedure [31].  

Yield 83%; mp 173-175 °C. 1H NMR (400 MHz, CDCl3) 

δ 7.91 (d, J 8.9 Hz, 1H), 7.51-7.38 (m, 1H), 7.06 (d,  

J 2.2 Hz, 1H), 7.03-6.95 (m, 1H), 6.40 (dd, J 8.8, 4.7 Hz, 

1H), 6.30 (dd, J 7.1, 1.4 Hz, 1H), 3.93-3.85 (m, 4H), 3.18-

2.85 (m, 3H), 2.70-2.61 (m, 1H), 2.56-2.41 (m, 5H), 2.38 (s, 

3H), 2.05-1.85 (m, 2H), 1.80 (s, 3H). LC/MS (APCI) m/z 

437.2 [M+H]+. Anal. calcld. for C25H28N2O5: C, 68.79;  

H, 6.47; N, 6.42. Found: C, 69.03; H, 6.22; N, 6.70. 

(1S,5R)-3-(3-{[(2Z)-2-(3,4-Dimethoxybenzylidene)-3-

oxo-2,3-dihydro-1-benzofuran-6-yl]oxy}-2-hydroxypropyl)-

1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]-

diazocin-8-one (1c) synthesized as previously was 

described procedure [31].  

Yield 77%; mp 124-126 °C. 1H NMR (400 MHz, CDCl3) 

δ 7.68 (dd, J 8.4, 1.2 Hz, 1H), 7.53-7.46 (m, 2H), 7.29-7.20 

(m, 1H), 6.95 (d, J 8.8 Hz, 1H), 6.80 (s, 1H), 6.72-6.64 (m, 

2H), 6.45 (d, J 9.0 Hz, 1H), 6.03-5.93 (m, 1H), 3.99 (s, 3H), 

3.95 (s, 3H), 3.93-3.85 (m, 4H), 3.18-2.85 (m, 3H), 2.70-

2.61 (m, 1H), 2.56-2.41 (m, 5H), 2.01-1.80 (m, 2H). LC/MS 

(APCI) m/z 545.2 [M+H]+. Anal. calcld. for C31H32N2O7:  

C, 68.37; H, 5.92; N, 5.14. Found: C, 68.21; H, 5.12;  

N, 5.02. 

(1S,5R)-3-{[(2Z)-6-Hydroxy-3-oxo-2-(pyridin-3-ylmethy-

lene)-2,3-dihydro-1-benzofuran-7-yl]methyl}-1,2,3,4,5,6-

hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-

one (6a) synthesized as previously was described procedure 

[32]. 

Yield 63%; mp 219-221 °C. 1H NMR (400 MHz, CDCl3) 

δ 9.37 (s, 1H), 9.03 (d, J 8.5 Hz, 1H), 8.93 (d, J 5.7 Hz, 

1H), 8.13 (dd, J 8.2, 5.7 Hz, 1H), 7.75 (d, J 8.5 Hz, 1H), 

7.48 (t, J 8.0 Hz, 1H), 7.06 (s, 1H), 6.95 (d, J 8.5 Hz, 1H), 

6.49 (d, J 9.0 Hz, 1H), 6.41 (d, J 7.0 Hz, 1H), 4.49 (d, 

J 14.1 Hz, 1H), 4.43 (d, J 14.1 Hz, 1H), 4.11 (d, J 15.8 Hz, 

1H), 3.93-3.82 (m, 1H), 3.77-3.65 (m, 1H), 3.65-3.55 (m, 

1H), 3.51-3.30 (m, 3H), 2.79-2.65 (m, 1H), 2.02-1.78 (m, 

2H). LC/MS (APCI) m/z 442.2 [M+H]+. Anal. calcld. for 
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C26H23N3O4: C, 70.74; H, 5.25; N, 9.52. Found: C, 70.93; 

H, 5.48; N, 9.31. 

(1S,5R)-3-{[3-(4-Chlorophenyl)-7-hydroxy-5-methoxy-4-

oxo-4H-chromen-8-yl]methyl}-1,2,3,4,5,6-hexahydro-8H-

1,5-methanopyrido[1,2-a][1,5]diazocin-8-one (6b) synthe-

sized as previously was described procedure [32].  

Yield 66%; mp 186-188 °C. 1H NMR (400 MHz, CDCl3) 

δ 7.72 (s, 1H), 7.45 (d, J 8.1 Hz, 2H), 7.38-7.31 (m, 3H), 

6.56 (d, J 9.1 Hz, 1H), 6.27 (s, 1H), 6.05 (d, J 6.8 Hz, 1H), 

4.19 (d, J 15.6 Hz, 1H), 3.97-3.81 (m, 5H), 3.76 (d, J 14.4 

Hz, 1H), 3.22-3.03 (m, 3H), 2.65-2.41 (m, 3H), 2.07-1.86 

(m, 2H). LC/MS (APCI) m/z 505.0 [M+H]+. Anal. calcld. 

for C28H25ClN2O5: C, 66.60; H, 4.99; N, 5.55. Found:  

C, 66.32; H, 5.18; N, 5.79. 

Biology 

The antimicrobial activity of the cytisine derivatives was 

evaluated in vitro against E. coli ATCC 25922 (American 

Type Culture Collection) strain, E. coli CRBR 

(Carbenicillin resistant clinical isolate of hemolytic E. coli) 

strain and MDR E. coli strain (Ampicillin, Ceftazidime, 

Ofloxacin, Kanamycin, Ceftriaxone resistant) received from 

the Museum of Microbial Culture Collection of the Shupyk 

National Healthcare University of Ukraine. Antimicrobial 

properties were determined by the disc diffusion method in 

Mueller-Hinton agar [33]. A final inoculum concentration 

of 1*105 colony-forming unit (CFU) per mL was 

established using a 0.5 McFarland turbidity standard. The 

subsequent dilution of 0.02 ml of the tested compounds was 

applied on standard paper disks (6 mm) which were placed 

on the agar plate. 

The compound content on a disk was 5.0 μM. The 

activity of tested compounds was identified by measuring 

the zone diameter of the growth inhibition, which indicates 

the degree of susceptibility or resistance of bacterial 

pathogens against the test compounds.  

Notes 

Supplementary Materials: Supplementary materials 

can be found at: https://bioorganica.com.ua/index.php 

/journal/issue/archive  
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Похідні цитизину як нові антибактеріальні агенти проти Escherichia coli: in silico та 

in vitro дослідження 

Д. М. Година1, В. В. Ковалішин1, В. М. Благодатний1, С. П. Бондаренко2, Г. П. Мруг1,  

М. С. Фрасинюк1, В. С. Броварець1, Л. О. Метелиця1* 
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Резюме: QSAR аналіз, який базувався на основі набору з 5143 раніше синтезованих сполук з активністю проти культури Escherichia coli із 

множинною лікарською стійкістю (MDR), був проведений за допомогою Онлайн платформи хімічного моделювання (OCHEM). Передбачувана 

здатність регресійних моделей була перевірена шляхом перехресної перевірки, коефіцієнт детермінації якої становив q2 = 0,72-0,8. Перевірка 

моделей з використанням зовнішнього тестового набору підтвердила використання моделей для прогнозування активності нових розроблених 

сполук із достатньою точністю в межах області застосування (q2 = 0,74-0,8). QSAR-моделі були використані для скринінгу віртуальної хімічної 

бібліотеки похідних цитизину, які володіють антибактеріальною активністю. Результати QSAR -моделювання дозволили ідентифікувати ряд 

похідних цитизину як ефективних антибактеріальних засобів проти антибіотикорезистентних штамів E. coli. Для синтезу та біологічного 

тестування було відібрано сім сполук. Іn vitro дослідження синтезованих похідних цитизину показали, що всі сполуки є потенційними 

антибактеріальними засобами проти мультирезистентних штамів E. coli. 

Ключові слова: похідні цитизину, QSAR, Escherichia coli, антибактеріальна активність.
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