НАБЛИЖЕННЯ ОБМЕЖЕНИХ РОЗВ’ЯЗКІВ РІЗНИЦЕВИХ РІВНЯНЬ
НА ПІВОСІ РОЗВ’ЯЗКАМИ ВІДПОВІДНИХ ЗАДАЧ КОШІ

Романенко В. М.
КНУХТ, Київ, Україна,
Romser1@bigmir.net

Нехай V — комплексний банахів простір з нормою $\| \|$ і нульовим елементом 0; I — одиничний оператор в V; $A : D(A) \subset V \to V$ — замкненій оператор. Відомо, що умова $\sigma(A) \cap [-2, 2] = \emptyset$ є необхідною і достатньою для того, щоб рівняння

$$x_0(n+1) + x_0(n-1) = Ax_0(n) + y(n), \quad n \in \mathbb{Z},$$

мало для кожної обмеженої послідовності $\{y(n) : n \in \mathbb{Z}\} \subset V$ єдиний обмежений розв’язок $\{x_0(n) : n \in \mathbb{Z}\} \subset D(A)$.

Розглянемо аналогічне (1) рівняння на півосі:

$$x(n+1) + x(n-1) = A x(n) + y(n), \quad n \geq 0.$$ \hspace{1cm} (2)

Теорема 1. Нехай $\sigma(A) \cap [-2, 2] = \emptyset$. Тоді для довільної обмеженої послідовності $\{y(n) : n \geq 0\}$ і для довільного значення $c \in V$ існує єдиний обмежений розв’язок рівняння (2) $\{x(n) : n \geq -1\}$ такий, що $x(-1) = c$.

Теорема 2. Нехай $\sigma(A) \cap [-2, 2] = \emptyset$ і $\{x(n) : n \geq -1\}$ — розв’язок рівняння (2). Тоді для кожних $a, b \in V$ і кожного $q \in \mathbb{N}$ єдиний розв’язок крайової задачі

$$u(n+1) + u(n-1) = A u(n) + y(n), \quad 0 \leq n \leq q-1,$$

$$u(-1) = a, \quad u(q) = b,$$

задовольняє нерівності

$$\| x(n) - u(n) \| \leq M \left(\| x(q) - b \| + \| x(-1) - a \| \right), \quad 0 \leq n \leq q-1.$$