Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria

V. Ivanov1, V. Stabnikov2, W.Q. Zhuang1, J.H. Tay1 and S.T.L.Tay1

1School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, and 2Department of Microbiology and Biotechnology, National University of Food Technologies, Kiev, Ukraine

2004/0884: received 30 July 2004, revised 11 November 2004 and accepted 12 November 2004

ABSTRACT

V. IVANOV, V. STABNIKOV, W.Q. ZHUANG, J.H. TAY AND S.T.L. TAY. 2005. Aim: The application of iron-reducing bacteria (IRB) to phosphate removal from returned liquor (liquid fraction after activated sludge digestion and anaerobic sludge dewatering) of municipal wastewater treatment plant (WWTP) was studied.

Methods and Results: An enrichment culture and two pure cultures of IRB, \textit{Stenotrophomonas maltophilia} BK and \textit{Brachymonas denitrificans} MK identified by 16S rRNA gene sequencing, were produced using returned liquor from a municipal WWTP as carbon and energy source, and iron hydroxide as oxidant. The final concentration of phosphate increased from 70 to 90 mg l-1 in the control and decreased from 70 to 1 mg l-1 in the experiment. The mass ratio of removed P to produced Fe(II) was 0.17 g P g-1 Fe(II). The strain \textit{S. maltophilia} BK showed the ability to reduce Fe(III) using such xenobiotics as diphenylamine, m-cresol, 2,4-dichlorphenol and p-phenylphenol as sole sources of carbon under anaerobic conditions.

Conclusions: Bacterial reduction of ferric hydroxide enhanced the phosphate removal from the returned liquor.

Significance and Impact of the Study: The ability of the facultative anaerobes \textit{S. maltophilia} BK and \textit{B. denitrificans} MK to reduce Fe(III) was shown. These micro-organisms can be used for anaerobic removal of phosphate and xenobiotics by bacterial reduction of ferric ions.

Keywords: iron-reducing bacteria, municipal wastewater, phosphate, returned liquor.
ACKNOWLEDGEMENTS

The research was supported by a grant from the Nanyang Technological University, Republic of Singapore. The authors thank Mr Z. Xing for the technical help in the performance of this research.

REFERENCES

