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A one-dimensional ballistic superlattice (mesoscopic crystal) containing impurity centers at potential 
barriers is considered. The dependence of the transmission coefficient T on the energy B is evaluated for 
this structure in the effective mass approximation. It is shown that scatterers are responsible for an 
increase in T by several orders of magnitude, a significant shift of resonant peaks, and the reappearance 
(at certain energies) of the plateau on the T ( e )  dependence, which is typical of the case V = 0  ( V  is the 
barrier height). The possibility of varying the energy spectra of the mesoscopic crystal over a wide range 
is thus demonstrated. © 1996 American Institute of Physics. [S1063-777X(96)01204-3]

 

A new class of semiconducting nanostructures, viz., the 
so-called mesoscopic crystals (or mesocrystals), has been 
discovered quite recently.1'2 These materials form a one- 
dimensional superlattice (SL) in which electrons move under 
ballistic conditions. Technological progress makes it possible to 
obtain such structures, which are characterized by a unique 
combination of the properties of superlattices with a high level of 
quantum coherence and low dimensionality, and hence become 
important and promising objects of investigation. It should also 
be noted that mesocrystals actually combine the properties of 
tunnel-resonant structures and quantum waveguides which were 
previously studied independently. At the same time, the 
important role of impurity centers in phenomena occurring in 
various nanostructures, tunnel-resonant structures, etc. is well 
known. For example, a very strong influence of impurities on the 
energy spectrum of an infinite periodic superlattice was 
demonstrated by Bel- tram and Capasso,3 while the role of 
impurities in disordered, hierarchial, and quasi-periodic 
(Fibonacci) superlattices was analyzed in our previous 
publications.4-6 We can rightfully expect that the energy 
spectrum, and hence transport properties of mesocrystals can also 
be varied over a wide range with the help of impurity level. This 
research is devoted to the verification of this statement. 

A mesocrystal can be formed, for example, on the basis 
of the heterostructure GaAs-Al^Gaj .......tAs containing a two- 
dimensional electron gas. A negative voltage applied to metal 
electrodes creates a narrow ballistic channel, whose overlapping 
with potential barriers results in a one- dimensional superlattice, 
or mesocrystal.1'2 In the case of high potentials, we obtain a 
sequence of quantum points. As usual, a quantum wire is 
regarded as a two-dimensional waveguide. In the effective-mass 
method, the wave function satisfies the following 
two-dimensional equation (in atomic units): 

AiA 

- 2 ^  + U+ =E+ -  (0  As the modulating potential depends only on 

the longitudinal coordinate x, it can be separated from the 

transverse coordinate y, and the function i// can be written in the 

form 

/ niry\ 
>Pn(x,y) = (p(x)sm\—^-J, (2) 

where d is the channel width. We assume that each potential 
barrier has only one "plane of impurity levels" (PIL).3'7 The wave 
functions corresponding to impurity levels are assumed to be 
strongly localized only in the direction normal to het- 
eroboundaries. Following Refs. 3 and 7 we model the potential of 
impurity centers by the ^-function Il(x) = fi(5(x — x c ) ,  a<0, 
where is the coordinate of an impurity. Assuming that the 
potential barriers in the x direction are rectangular (see Ref. 1), 
we can write the equation for the function <p in the barrier 
regions: 

^  +  e < p  =  [ V ( x )  +  / 3 S ( x - x c ) ] < p ,  (3) 

where 

 

V ( x )  =  2  m * v ( x ) ,  E < v ,  

and v ( x )  is the height of potential barriers. In the regions 
between the barriers, the right-hand side of Eq. (3) is equal to 
zero. According to Wu et al.,2 the conductivity G ( E )  of a 
mesocrystal in the two-dimensional case can be expressed in 
terms of the one-dimensional conductivity g(e): G ( E )  =  
1 , n g ( e n ) ,  where the sum is taken over all open channels. In this 
case, the G ( E )  curve is the superposition of displaced curves 
g ( s n ): the first term is shifted by e0, the second by 22e0, the third 
by 32e0, and so on, where e0 is the threshold transverse energy 
(7r / d ) 2 .  Here we calculate the transmission coefficient T  which 
is connected with g ( e )  through the well-known relation g ( e )  =  
2 e 2 T I h .  

We represent the wave functions at barriers and quantum 
wells in the form
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( P j ( x ) = A j e i k x + B i e  

where k = ~ i K =  — I \je — 

V  for the barrier 
regions and k= \[e for 
the quantum wells. The coefficients Aj and Bj 
can be determined with the help of the method of transfer matri-

ces, where we assume that the coefficient 
for an incident wave is equal to unity, and 
the coefficient Bj with the highest index is 
equal to zero (the absence of the reflected 
wave behind the last barrier). The form of 

the matrices transferring the solution through heteroboundaries 

R  and PIL is well known (see Refs. 8 and 9 respectively). For 
example, the matrix transferring the solution through the PIL has 
the form9 

1  2 K- P  
M R  
2 K \  F 3 E  

The transmission coefficient T ( E )  under these conditions has 
the form 

- 2  

U K  
n =  1  

11 

where r is the number of boundaries between barriers and wells; 
R ' N  =  R L S  for even N  and R'N = R 2 S ~ I M S  for odd N  (S =  
1,2,3,...). 

We now calculate the coefficient T ( E )  by formula (6) for a 
structure with the following parameters: V= e0, M*  =  

0 . 07 M 0 ,  and PIL are located at the centers of the barriers. Let 
us analyze the initial region of the spectrum. Figure 1 shows the 

T ( E ) dependences for /3 = 0 (the barriers contain no scatterers), 
0.01, and 0.0074 at. units; the barrier thickness is b  =  0.5d ,  and 
the number of barriers is six as in Refs. 1 and 2. Figure la 
demonstrates that the presence of super- lattice modulation of the 
potential leads to sharp oscillations of the quantity T ( E )  in the 
region of the plateau observed for V=0. (As the number of 
periods in the superlattice increases, the group of resonances is 
transformed into a mini- band of resonant (allowed) energies.) 
Figures lb and c show that impurity centers strongly affect the 
spectrum of the me- socrystal. The observed effect has the same 
physical nature as that manifested in the effect of impurities on 
the energy spectrum of a periodic SL described by Beltram and 
Capasso.3 The authors of Ref. 3 demonstrated that the intro-
duction of impurities into the potential barriers of one- 
dimensional infinitely long periodic SL leads to an increase in 
the widths of allowed minibands of the SL under consideration 
by several orders of magnitude. The maximum effect is observed 
when impurity levels are located most closely to the energy 
levels in the quantum well of the SL. According to Ref. 3, this is 
explained by the interaction (mixing) of impurity states with the 
states in the wells. A mesocrystal can be regarded as a periodic 

SL (with a finite number of periods), for which the minibands of 
allowed energies correspond to a transparency T  whose value is 
virtually equal to unity (for not very wide barriers). In analogy 
with Ref. 3, mesocrystals exhibit a considerable broadening of 
energy intervals for which T —  1. Although the reason behind 
the effect of impurities on the energy spectra of the SL 
considered in Ref. 3 and of a mesocrystal is the same, the results 
of this 
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effect in the mesocrystal have some peculiarities. It can be seen 
in Fig. lb that under the effect of scatterers, the resonances are 
shifted significantly towards lower energy, some of them being 
lowered to the under-the-barrier region. The resonances become 
less sharp, and the separation between them increases. It should 
be noted that for a large barrier width the maximum value T M  
becomes noticeably smaller than unity, but the presence of 
impurities leads to an increase in T M . For example, the value of 
T M  increases due to the presence of scatterers by approximately 
two orders of magnitude and becomes virtually equal to unity 
(T~ 0.999) for b  =  d =  2000 at. units. 

 

A very strong change in the spectrum is observed in Fig. lc: 
instead of individual resonances, we have an energy interval in 
which T —  1 almost everywhere. In other words, the presence of 
scatterers restores the plateau in the T ( E )  dependence, which 
was destroyed by superlattice modulation of the potential. It 
should be noted that this is observed for the values of (3 for 
which resonant tunneling through an

i k x (4)

2 KX ,  - f i t  

2 K + P  (5)2 KX r  

(6)T ( S )~ -  
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FIG. 1. Dependence of the transmission coefficient T  on energy e for three values 
of fi, at. units: 0 (a), 0.01 (b), and 0.0074 (c). The values of other parameters are 
given in the text. 

e , 10"4 at. units
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isolated (individual) barrier is possible. In the case of "barrier 

resonances," the interaction of impurity states with one another 
and with the states in quantum wells is very strong, and new 
resonant states emerging as a result of this interaction cannot be 
identified by indicating their origin (in contrast to the case 
illustrated in Fig. 2a when this can be done easily). 

Thus, the position of resonant peaks er depends considerably 
on the intensity of the ^-potential and on the barrier width. The 

dependence of er on /? is approximately the same for all 
resonances and is close to linear. For example, the resonance 
depicted in Fig. la are displaced by Ae,= 10"4 at. unit when p 
changes by 0.001 at. unit. 

Figure 2 shows the dependences logHe) for rather broad 
barriers with b = 1500 at. unit for 0.008 and 0.012 at. unit. For the 
two groups of resonance clearly seen in Fig. 2a, the right group 
is due to impurity states. With increasing 

the energies corresponding to the two groups of resonances 
become closer, and the interaction between various states 
becomes stronger, leading to broadening of both energy 
intervals with high values of T .  Figure 2b illustrates the case 
when the energy intervals corresponding to high values of T  
overlap. 

It should be noted that the values of fi for which the case of 
"barrier resonances" is realized also depend on the barrier width. 
As the value of b increases, the range of corresponding to this 
case is broadened and displaced towards higher energies. For 
example, the case of "barrier resonances" is realized for the 
barrier width b- 700 at. units for the values of j3 belong to the 
interval [0.005; 0.008], while for b= 1500 at. unit this interval is 
[0.007; 0.014], 
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FIG. 2. Dependence of log7"(e) for broad barriers with b— 1500 at. units for 
/?=0.008(a) and 0.012 at. unit(b). The number of barriers is six. 
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