THE SECOND NORTH AND EAST EUROPEAN CONGRESS ON FOOD

NEEFood - 2013
Kyiv

May 26-29, 2013

NUFT, Kyiv, Ukraine

Organized by:

National University of Food Technologies

and

Association «Higher Educational Institutions and Enterprises of Food Industry UkrUFoST»

In cooperation with:
One of the least unprofitable and non-waste technologies of lactoserum processing is manufacture of fermentation drinks with the addition of rye fermented malt. For conduct of fermentation process it is reasonable to use the special microorganisms able to utilize lactose with formation of alcohol and carbon dioxide.

Influence of different lactose fermentative yeast races (Zygosaccharomyces lactis 868-K, Saccharomyces lactis 95, Kluyveromyces lactis 469) on physical and chemical parameters of fermented wort in comparison with the standard ones was investigated. The results prove the highest fermentative activity of Zygosaccharomyces lactis 868-K yeast, in particular: ethyl alcohol content – 1.0 v. %, sodium hydroxide solution acidity with concentration of 1 mol/dm3 per 100 cm3 of drink – 3.5 cm3, drink stability at 20 °C – 5 days. Physical and chemical parameters of wort fermented with Saccharomyces lactis 95 and Kluyveromyces lactis 469 yeast are considerably lower than the standard ones which points at rather low activity of ferments catalyzing lactose hydrolysis.

For investigation of influence lactose fermentative yeast on organoleptic parameters, there were identified waste products of fermentation in distillate of fermented serum and malt drink by gas and chromatographic method by actual techniques of definition of C$_1$-C$_5$ spirits developed by scientists of Basic Scientific Research Laboratory of National University of Food Technologies. After the contents of waste fermentation products, wort fermented with Zygosaccharomyces lactis 868-K yeast, which is characterized by low concentrations of n-propane (1.84 mg/dm3), isobutane (29.30 mg/dm3), acetaldehyde (27 mg/dm3) and high concentrations of 2-methyl-1-butanol (58.59 mg/dm3) and 3-methyl-1-butanol (211.11 mg/dm3) has higher parameters. In wort fermented by Saccharomyces lactis 95 and Kluyveromyces lactis 469 yeast, high concentrations both of n-propane (157.53 mg/dm3 and 33.29 mg/dm3, respectively), isobutane (261.80 mg/dm3 and 32.27 mg/dm3, respectively), and acetaldehyde (229.04 mg/dm3 and 172.48 mg/dm3, respectively) are accumulated. Moreover, such trial samples have low concentrations of 2-methyl-1-butanol (20.78 mg/dm3 and 17.56 mg/dm3), respectively) and 3-methyl-1-butanol (6.24 mg/dm3 and 17.56 mg/dm3), which influence on formation of a general fermented drink aroma.

As it can be seen from experimental research, biosynthesis of fermentation waste products can be defined as the result of regulatory functions of a yeast cell. Presence of Zygosaccharomyces lactis 868-K yeast strain in nutrient medium positively influences on producer’s metabolism by stimulating biosynthesis or transformation of nutrient medium aromatic substances.

KEY WORDS: fermentation waste products, serum and malt drink.