86 International scientific conference of young scientist and students

"Youth scientific achievements to the 21st century nutrition problem solution"

April 2-3, 2020

Part 1

Kyiv, **NUFT**, **2020**

86 International scientific conference of young scientist and students "Youth scientific achievements to the 21st century nutrition problem solution", April 2–3, 2020.

Book of abstract. Part 1. NUFT, Kyiv.

10. Визначення біологічно активних речовин в соці Plantagomajor та сироватці

Лариса Чубенко, Олена Грек

Національний університет харчових технологій, Київ, Україна

Вступ. Традиційні методи концентрування складових молока можуть мати ряд особливостей — відсутність комплексного осадження білків, використання коагулянтів тваринного походження, високі температури обробки, надання згустку сторонніх присмаку та запаху, отримання згустку з щільною консистенцією, та інше. Тому доцільним є дослідження процесів осадження білкової складової із залучення рослинних коагулянтів. Проводили коагуляцію білків молока протеазами та органічними кислотами, що містяться в Plantagomaior.

Для визначення ступеня переходу біологічно активних речовин в білково-рослинні концентрати було проаналізовано поліфенольний склад коагулянту — соку з наземної частини подорожнику та сироватки — отриманої при осаджені білків молока.

Матеріали і методи. Ідентифікацію в екстракті *Plantagomajor* проводили шляхом порівняння часу утримування і спектральних характеристик досліджуваних речовин з аналогічними характеристиками стандартів відповідно до способу ідентифікації поліфенолів. Хроматографування проводили при довжині хвилі 225, 255, 286 і 350 нм. Речовини, ступінь подібності яких з будь-яким стандартом був нижче 70%, відносили до групи неідентифікованих речовин, а їх вміст визначали за стандартами, ступінь подібності з якими був найбільшим.

Результати дослідження. Загалом в сироватці, що була вилучена після осадження білків молока рослинним коагулянтом, ідентифіковано 12 сполук класу флавоноїдів, що на 10 менше, порівняно з їх вмістом в соці подорожнику. Ймовірно, це пов'язано з тим, що значна кількість поліфенольнихсполук з соку перейшла до молочно-білкового концентрату під час денатурації.

Для якісного визначення біологічно активних речовин вимірювали спектри поглинання характерні для даних сполук. З досліджуваних зразків розчином спирту повністю вивільняються флавоноїди, і спектри поглинання розчинів мають смуги, відповідні фенольним сполукам (225-350 нм). Ідентифікацію проводили шляхом подібності часу утримання (Т утрим.) досліджуваних речовин та індексу подібності (ІL), що вказує на схожість між речовиною і стандартом за спектральними характеристиками, до якого речовина ε більш схожою.

Більшу кількість флаваноїдів ідентифіковано при довжині хвилі (λ) 225нм, за якою було проведено калібрування залежності «площа піку-вміст» (S) для конкретного стандарту.

Склад флавоноїдів соку *Plantagomajor* багатокомпонентний. При дослідженні виду спектру поглинання спиртового вилучення з соку наземної частини подорожнику великого встановлено, що з 22 виділених флавоноїдів 9 речовин являються 6-оксифлавонами, для яких характерне наявність максимуму в межах 255-285 нм.

Висновок.За результатами вимірювань сума поліфенолів у соці подорожнику склала 1411.13 мг/л, а у сироватці, що була вилучена після коагулювання білків молока за підвищених температур вище зазначеним соком, на рівні 324.43 мг/л.Вміст флавоноїдівсклав 144.57 мг/л в соці та 37.11 мг/л відповідно в сироватці.

Література.

Grek O., Chubenko L., Kumar A., Khareba V., Tymchuk A., Onopriichuk O. (2019). Polyphenolic compounds transition into protein-plant concentrates during the deposition of milk proteins by Plantago major L. *Ukrainian Food Journal*, 8 (4), 745 – 754.