1981p.	Клевцов П.В., Перепелиця О.П., Максін В.І. Поліморфізм талій-рідкоземельних вольфраматі TlLn(WO ₄) ₂ .	в складу
1981r.	Клевцов П.В., Перепелиця А.П., Максин В.И. Полиморфизм тиллий-редкоземельных вольфрамат TlLn(WO4)2.	ов состава
10 8 1v	Klaytsov P.V. Parapalytsva A.P. Maksin V.I.	

1981y. Klevtsov P.V, Perepelytsya A.P., Maksin V.I.
Polimorphism of tallium-r.e.e. tungstates composition TlLn(WO₄)₂.

Для двойных вольфраматов TlLn(WO₄)₂, Ln-La-Lu, Y, обнаружено два структурных типа – α -KNd(WO₄)₂ для La і α -KY(WO₄)₂ для Ce-Lu, Y. Определенны параметры элементарных ячеек.

Two structural types $- \alpha$ -KNd(WO₄)₂ with La and α -KY(WO₄)₂ with for TlLn(WO₄)₂ are discovered. Parameters of elementary cells are determinated.

Ключові слова: подвійні вольфрамати TlLn(WO₄)₂, Ln-La-Lu, Y, структурні типи, параметри комірок.

Ключевые слова: двойных вольфраматов TlLn(WO₄)₂, Ln-La-Lu, Y, параметры элементарных ячеек.

Key words: double tungstates $TlLn(WO_4)_2$, Ln-La-Lu, Y, structural types, parameters of cells.

КЛЕВЦОВ П. В., ПЕРЕПЕЛИЦА А. П., МАКСИН В. И.

ПОЛИМОРФИЗМ ТАЛЛИЙ-РЕДКОЗЕМЕЛЬНЫХ ВОЛЬФРАМАТОВ СОСТАВА TILn(WO₄)₂

Двойные вольфраматы TlLn(WO₄)₂ изоструктурны известным α -KNd(WO₄)₂ (Ln = La) и α -KY(WO₄)₂ (Ln = Ce ÷ Ln, Y). Плавятся в интервале температур 920 – 1015 °C. Перед плавлением претерпевают полиморфные превращения в β -структуры типа CaWO₄(La), α -KNd(WO₄)₂ (Ce, Pr), KY(MoO₄)₂ (Nd), β' = KY(WO₄)₂ (Eu ÷ Ln, Y). Обнаружены метастабильные переходы $\beta \leftrightarrow \beta$ 'в лантановом и неодимовом соединениях. Определены параметры элементарных ячеек.

Исходными объектами исследования служили рентгеноаморфные гидратированные двойные вольфраматы, полученные соосаждением из водных растворов [1], и кристаллические соединения TlLn(WO₄)₂ (Ln = Y, La ÷ Lu), синтезированные методом твердофазных реакций из TlNO₃+Ln₂O₃+ +4WO₃ при температурах 700 – 900 °C [2]. Основные методы исследования: дифференциальный термический анализ (ДТА, прибор HTP-70), рентгзно-фазовый анализ (аппараты УРС-50И и ДРОН-2) и высокотемпературная дифрактометрия (ВТД, аппарат ДРОН-0,5 с приставкой КРВ-1200).

Температуры фазовых переходов измерены по кривым нагревания ДТА. Полученные данные учитывались в опытах ВТД. Параметры элементарных ячеек вычислены из дифрактограмм, записанных с образцов, содержащих кристаллический кремний или германий в качестве эталона, и уточнены методом наименьших квадратов с помощью ЭВМ. Закалку высокотемпературных фаз отдельных соединений проводили в воду.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Образцы твердофазных спеков и обезвоженных и прокристаллизованных при высоких температурах соединений имеют при стандартных условиях одинаковое кристаллическое строение и не обнаруживают на кривых нагревания ДТА вплоть до точки плавления тепловые эффекты, которые могли бы быть вызваны полиморфными превращениями. На возможность существования структурного фазового перехода в отдельных соединениях непосредственно перед их плавлением указывало наличие на дифференциальных кривых нагревания ДТА дополнительного плеча или незначительное расщепление пика, отвечающего плавлению вещества. Наиболее отчетливое расщепление зафиксировано для таллий-иттриевого вольфрамата (рис. 1), а закалка образца TlY(WO₄)₂ от температуры плавления (частично подрасплавившегося) приводит к получению второй кристаллической модификации, отличной от стабильной при более низких температурах, что подтверждает полиморфизм данного соединения.

Другой способ получения высокотемпературной фазы в метастабильном, состоянии заключается в нагревании рентгеноаморфного соединения $TlY(WO)_2 \cdot 4H_2O$. В этом и в других рассматриваемых соединениях $TlLn(WO_4)_2 \cdot 4H_2O$ при нагревании фазовые переходы в более устойчивое состояние реализуются через последовательность все менее метастабильных фаз в соответствии с правилом ступеней Освальда. На рис. 1 приведены данные ДТА для Tl, Y-вольфрамата, одинаковые с другими аналогичными соединениями и отличающиеся от данных ДТА образцов, полученных твердофазным синтезом, дополнительными термоэффектами: одним эндотермическим (при 100 – 150 °C), связанным с удалением из соединения воды, и двумя экзотермическими (для иттриевого соединения в области 350 и 620 °C). Природа экзотермических эффектов изучена высокотемпературной дифрактометрией. Первый из них обусловлен переходом из рентген-оаморфного состояния в кристаллическое, а именно, в вышеупомянутую высокотемпературную модификацию (β).

Второй экзоэффект отвечает превращению из метастабильного состояния в стабильное (β→α).

Таким способом найдено, что двойные таллиевые вольфраматы со всеми редкоземельными элементами являются полиморфными и получены высокотемпературные модификации в метастабильном состоянии. Аморфные формы таллий-редкоземельных вольфраматов кристаллизуются при 300 – 450 °C. Переход из метастабильной в стабильную форму происходит в интервале 500 – 725 °C.

Температура $\beta \rightarrow \alpha$ -перехода заметно повышается в ряду соединений T1Ln(WO₄)₂ с увеличением порядкового номера Ln от Eu (520 °C) до Lu(725 °C). Эта группа соединений плавится в интервале 930 (Lu) – 1015 °C (Gd) и обладает одинаковым с TlY(WO₄)₂ структурным полиморфизмом.

Порошковые дифрактограммы α-T1Ln(WO₄)₂ проиндицированы в моноклинной

элементарной ячейке структурного типа α-КҮ(WO₄)₂ (пространственная группа 12/с) с учетом интенсивностей отражений, полученных с монокристалла последнего соединения [3, 4]. Перед плавлением двойные вольфраматы с Ln = Y, $Eu \div Lu$ переходят в модификацию [5], являющуюся в калий-редкоземельных аналогах (Ln = Sm ÷ Lu, Y), но данным [6], низкотемпературной метастабильной β' -фазой (тип β' - КҮ(WO₄)₂), в которую переходит при быстром охлаждении практически высокотемпературная незакаляемая β-модификация, изоструктурная с ромбическим КУ(МоО₄)₂ [3].

Рис. 1. Кривые нагревания ДТА рентгеноаморфного TlY(WO₄)₂·4HO₂

Таким образом, двойные вольфраматы TlLn(WO₄)₂ с Ln = Eu ÷ Lu и Y образуют два изоструктурных ряда: один стабильный почти при всех температурах от комнотной до точки плавления, другой устойчив в узком

температурном интервале непосредственно перед плавлением вещества. Переход α→β осуществляется с увеличением формульного объема элементарной ячейки на 11,7 (Eu) – 12,9 (Lu)%. Параметры элементарной ячейки и температуры плавления приведены в таблице

Существование модификаций типа β' -КY(WO₄)₂ можно было ожидать и в соседнем с этой группой Tl, Sm-вольфрамате, также стабильном в структурном типе α -КY(WO₄)₂ (по аналогии с изоструктурной группой K, Ln-вольфраматом с Ln = Sm ÷ Lu, все соединения которых обладают одинаковым между собой полиморфизмом). Однако дифракционную картину второй кристаллической модификации, полученной для TlSm(WO₄)₂, не удалось отнести ни к одному из известных среди двойных вольфраматов и молибдатов структурных типов.

Диапазон устойчивости структурного типа α -КY(WO₄)₂ в ряду двойных вольфраматов Ln с T1 шире, чем с К. Все таллий-редкоземельные вольфраматы TlLn(WO₄)₂, за исключением первого (Ln = La), найдены изоструктурными, но полиморфизм соединений с Ce, Pr и Nd отличается от рассмотренного сменой структурных типов высокотемпературных фаз.

В TINd(WO₄)₂, как и в KLn(WO₄)₂ с Ln = Sm ÷ Lu и Y, β -модификация найдена изоструктурной с KY(MoO₄)₂ [7] и при охлаждении испытывающей легко обратимые превращения в метастабильном состоянии (около 70 °C) и β '-фазу, обладающую, однако, иной (неизвестной) структурой.

Структурный тип моноклинного α -KNd(WO₄)₂ [8] представляет β -модификацию T1, Ce- и T1, Pr-вольфраматов, а также α -T1La(WO₄)₂. В T1, La-вольфрамате он устойчив во всем интервале температур — от комнатной до температуры плавления.

T1, Се-вольфрамат в этом структурном типе также обладает высокой устойчивостью, что следует из экспериментальных данных. Методом твердофазных реакций соединение TlCe(WO₄)₂ синтезировано в модификации типа α -KNd(WO₄)₂ и устойчиво в ней при нагревании: в опытах ДТА и ВТД (нагрев до температуры плавления 930 °C и выше и до 900 °C соответственно) превращения в твердой фазе не зафиксированы. В процессе

плавления и последующей кристаллизации образцы T1, Се-вольфрамата приобретают стабильную структуру типа α-КҮ(WO₄)₂.

	Моди-	Структурный	Bepo-	Параметры элементарной ячейки					d_{x}	<i>t</i> _{<i>n</i>л} , °С
Ln	фика-	тип	ЯТН.	<i>a</i> , Å	<i>b,</i> Å	<i>c</i> , Å	β	Z	г/см ³	± 15 °
	ция		фед. гр.				-			
La	α	α -KNd(WO ₄) ₂	12/m	8,45	10,99	7,64	100°27'	4	8,04	
	β	CaWO ₄	$14_{1}/a$	5,46		12,29		2	7,63	940
Ce	α	α -KY(WO ₄) ₂	12/c	8,29	10,73	7,68	94°08'	4	8,22	
	β	α -KNd(WO ₄) ₂	12/ <i>m</i>	8,43	10, 93	7,62	101°30'	4	8,14	920
				· · ·	·				-	
Pr	α	α -KY(WO ₄) ₂	12/c	8.26	10,69	7,65	94°08'	4	8,32	
	β	α -KNd(WO ₄) ₂	12/m	8,41	10,88	7,60	101°47'	4	8,24	950
				· · ·					-	
Nd	α	α -KY(WO ₄) ₂	12/c	8,24	10, 65	7,64	94°14'	4	8,41	
	β	$KY(MoO_4)_2$	Pcan	18,64	5,23	8,13		4	7,10	970
	'	(1)2		,	,	,			,	
Sm	α	α -KY(WO ₄) ₂	12/c	8,19	10,62	7,58	94°15'	4	8,62	985
		(1)2		,	,	,			,	
Eu	α	α -KY(WO ₄) ₂	12/c	8.18	10.59	7.58	94°14'	4	8.67	
	β	$\beta'-KY(WO_4)_2$	P2/c	17.88	10.47	7.84	94°47'	8	7.76	1000
	r	P (·· • • •)2	/ -			.,	, ,	-	.,	
Gd	α	α -KY(WO ₄) ₂	12/c	8,17	10,56	7,56	94° 14'	4	8,79	
	β	$\beta'-KY(WO_4)_2$	P2/c	17.89	10.44	7.82	94°51'	8	7.85	1015
	r	P (··· • 4)2	/ -			.,		-	,,	
Tb	α	a-KY(WO ₄) ₂	12/c	8 1 5	10.50	7 55	94°13'	4	8 89	
10	ß	$\beta'-KY(WO_4)_2$	P2/c	17.89	10.41	7 81	94°54'	8	7 91	995
	r	P (··· • 4)2	/ -			.,		-	.,	
Dv	α	α -KY(WO ₄) ₂	12/c	8 1 3	10 47	7 53	94°11'	4	8 98	
29	ß	$\beta'-KY(WO_4)_2$	P2/c	17.88	10.38	7 80	94°56'	8	7 98	1000
	P	p 111 (11 0 4)2	1 =/ 0	17,00	10,00	,,	1.00	U	1,50	1000
Но	α	α -KY(WO ₄) ₂	12/c	8 13	10 44	7 53	94° 16'	4	9.05	
110	ß	$\beta'-KY(WO_4)_2$	P2/c	17 90	10.32	7 78	95°00'	8	8.06	980
	Р	p ICI (1104)2	12/0	17,50	10,52	1,10	<i>))</i> 00	0	0,00	200
Y	α	a-KY(WO ₄) ₂	12/c	8 12	10 46	7 53	94°14'	4	8 25	
-	ß	$P'-KY(WO_4)_2$	P2/c	17.89	10.35	7 78	94°47'	8	7 33	975
	P	1 111((((04))2	1 2/0	17,05	10,00	,,,,,	2	U	1,00	3,0
Er	α	α -KY(WO ₄) ₂	12/c	8 12	10.42	7 52	94° 10'	4	9 1 1	
LI	ß	$\beta'-KY(WO_4)_2$	P2/c	17.89	10,12	7,32	94°55'	8	8 11	980
	Р	p III (1104)2	12/0	17,05	10,20	',''	71 33	0	0,11	200
Tm	α	a-KY(WO ₄) ₂	12/c	8 10	10.39	7 50	94°05'	4	9 20	
1 111	ß	$P'_{K}V(WO_{4})_{2}$	P2/c	17.91	10,55	7,50	95°02'	8	8.17	960
	Ч	I IXI (WO4)2	1 2/0	17,71	10,25	1,15	75 02	0	0,17	200
Yh	a	α -KY(WO ₄) ₂	12/c	8 10	10.36	7 49	94°05'	Δ	9.27	
10	ß	$\beta'_{K} V(WO_{4})_{2}$	P2/c	17.90	10,30	7 75	95°02'	8	8 22	935
	Ч		1 2/C	17,90	10,25	1,15	75 02	0	0,22	,,,,
Lu	a	α -KY(WO ₄) ₂	12/c	8 10	10 33	7 48	94°05'	4	936	930
Ľu	ß	$\beta' - KY(WO_4)_2$	P2/c	17.91	10,35	7 74	95°02'	т 8	8 28	750
	l h	$\Gamma P \rightarrow \Gamma (W \cup 4)2$	14/0	17,71	10,20	7,77	75 04	0	0,20	

Структурные данные и температуры плавления TlLn(WO₄)₂

Структурное превращение $\beta \rightarrow \alpha$ (« α -KNd(WO₄)₂» \rightarrow « α -KY(WO₄)₂») в TlPr(WO₄)₂ протекает уже при 500 °C с заметной, хотя н малой, скоростью. После отжига при 650 °C в течение 5 ч α -модификация в образце, судя по рентгеновской дифрактограмме, значительно преобладает.

Причину замедленных процессов превращения $\beta \rightarrow \alpha$ в Tl, Pr- и особенно в Tl, Ceвольфрамата можно усматривать в близости кристаллоструктурного и энергетического состояния обеих модификаций. Известно, что структуры этих модификаций тесно связанны между собой и являются производными структуры шеелита, CaWO₄ [9]. Из таблицы видно, что значения параметров и объемов их элементарных ячеек аналогичны. Так, при комнатной температуре для TlCe(WO₄)₂ превышение объемной элементарной β-ячейки над объемом ячейки α-формы составляет 1 %.

Можно пологать, что различие в энергиях решеток α- и β-структур минимально в Tl, Ce-вольфрамате, так как Ce в ряду редкоземельных элементов является граничным элементом, разделяющим области стабильности той и другой модификации при относительно низких температурах: для Ce и всех более мелких Ln устойчив типа α-KY(WO₄)₂, а более крупного La-типа α-KNd(WO₄)₂.

Рис.2. Структурные типы TlLn(WO₄)₂

Анализ всех известных соединений $M^+Ln^{3+}(WO_4)_2$, кристаллизующихся в этих структурных типах, позволяет сделать заключение об определяющей роли соотношения ионных радиусов катионов M^+ и Ln^{3+} в формировании конкретного типа. В структурном типе α -KNd(WO₄)₂ кристаллизуются также α -KLn(WO₄)₂ (Ln = La ÷ Pr), β -RbLa(WO₄)₂ и α -AgLn(WO₄)₂ (Ln = Ce ÷Lu). С α -KY(WO₄)₂ изоструктурны α -KL(WO₄)₂ (Ln = Sm ÷ Lu) и α -RbLn(WO₄)₂ (Ln = La ÷ Yb) [9]. В соответствии с системой ионных радиусов [12] во всех случаях структура типа α -KLn(WO₄)₂ образуется при соотношении $r_{M^+}/r_{Ln^{3+}} \ge 1,39$, а α -KNd(WO₄)₂ – при $r_{M^+}/r_{Ln^{3+}} < 1,39$. Последний структурный тип при соотношении, равном или несколько больше 1,39 стабилен только при высоких температурах (α -модификации).

Фазовые переходы в T1La(WO₄)₂ аналогичны переходам в изоструктурных соединениях $M^+Ln(WO_4)_2$ с M = K и Ag: [10, 11]. Высокотемпературная шеелитовая модификация легко закаляется, а при недостаточно быстром охлаждении, очевидно, реализуется переход в искаженную шеелитовую (β ', тип CaWO₄-*d* [9]), сопровождающийся упорядочением в структуре катионов T1⁺ н La³⁺. На этот переход указывают перераспределение интенсивностей и расщепления (слабо разрешенные) отдельных рефлексов на рентгеновских дифрактограммах.

Схема обнаруженных в таллий-редкоземельных вольфраматах полиморфных модификаций изображена на рис. 2.

Литература

- 1. Максин В. И., Голуб А. М., Кириллов С. А. Ж. неорган, химии, 1976, т. 21, с. 2702.
- 2. Голуб А. М., Максин В. И. Ж. неорган химии, 1977, т. 22, с. 566.
- 3. Клевцов П. В., Козеева Л. П., Клевцова Р. Ф. Ж. неорган, материалы, 1968, т. 4, с. 1147.
- 4. Борисов С. В., Клевцова Р. Ф. Кристаллография, 1968, т. 13, с. 517.
- 5. Полъщикова 3. Я., Трунов В. К. Ж. неорган, химии, 1970, т. 15, с. 268.
- 6. Клевцов П. В., Козеева Л. П., Харченко Л. Ю., Павлюк А. А. Кристаллография, 1974, т. 19, с. 552.
- 7. *Клевцова Р. Ф., Борисов С. В.* Докл. АН СССР, 1967, т. 177, с. 1333.
- 8. Клевцова Р. Ф., Волкова Л. М. Кристаллография, 1972, т. 17, с. 859.
- 9. Клевцов П. В., Клевцова Р. Ф. Ж. структурн. химии, 1977, т. 18, с. 419.
- 10. Клевцов П. В., Козеева Л. П., Харченко Л. Ю. Кристаллография. 1975, т. 20, с. 1210.
- 11. Клевцов П. В., Максин В. И., Клевцова Р. Ф., Голуб А. М. Кристаллография, 1976, т. 21, с. 759.
- 12. Shannon R.D. Acta Crystallogr., 1976, v. A32, p. 751.

Институт неорганическоой химии Сибирского отделения АН СССР Киевский технологический институт пищевой промышленности

Надійшла _____ 2013р Клевцов П.В., Перепелиця А.П., Максин В.И. Журнал прикладной химии. 1983. Т. 28. № 11. с. 2789-2792.

Клевцов П.В., Перепелиця А.П., Максин В.И.