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In terms of the best approximations of a function in the space Lp, the
conditions of existence of its (i, 3)-derivatives and the uniform convergence
of Fourier series to them are determined.

Let L, be a space of measurable 2r-periodic functions f(z) for which
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be its Fourier series.
Let ¢(t) > 0 for t > 1 and let § be any fixed real number. If the series
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is the Fourier series of some summable function, it is called the (¢, () -
derivatives of a function f and is denoted f;_f . The set of functions that

satisfy these conditions is denoted by Lg.
If f e LY, and fg’ € N where N C L(0,27) we say that the function

belongs to the class LEN [1, c. 142 143].

This report is devoted to the determination of a sufficient conditions of
existence of the continuous (v, 3)-derivative of a function f from L, and
the uniform convergence of the Fourier series of the (¢, §)-derivative in the
terms of the best approximations E,(f),. Theorem. Let 1)(t)be a positive
nonincreasing function which is defined for allt > 1 and is such that 1(2t) >
cp(t) fort > 1 (c is some positive constant) and let the best approrimations
of the function f € L, , 1 < p < oo satisfy the condition
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Then, for any real B the function f € L, possesses a continuous (v, [3)-
deriwative whose Fourier series converges uniformly.
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