Перегляд за Автор "Yuryk, Ivan"
Зараз показуємо 1 - 20 з 30
- Результатів на сторінці
- Налаштування сортування
Документ A new method for construction of solutions nonlinear wave equations(1999) Barannyk, Anatoliy; Yuryk, IvanA new simple method for multidimensional nonlinear wave equations is proposed.Документ Application of group-theoretical methods to point explosion problem in incompressible liquid(2015) Yuryk, IvanGroup-theoretical methods are applied to find particular solutions to differential systems in hydrodynamics. Obtained solutions that satisfy the Rankine-Hugoniot conditions is used to describe a point explosion in incompressible liquid.Документ Construction on exact solutions of diffusion equation(2004) Barannyk, Anatoliy; Yuryk, IvanNew extended classes of exact solutions of a nonlinear diffusion equation are constructed.Документ Exact solution of the multidimensional Liouville equation(2015) Yuryk, IvanLet us consider the multidimensional Liouville equation.Документ Exact solutions of an equation of gas dynamics(1998) Barannyk, Anatoliy; Yuryk, IvanAnew class of exact solutions of the gas dynamics equations is obtained.Документ Exact solutions to nonlinear equation of utt=a(t)uuxx+b(t)u2x+c(t)u(2018) Barannyk, Anatoliy; Barannyk, Tatiana; Yuryk, IvanДокумент Generalized procedure of separation of variables and reduction of nonlinear wave equations(2009) Yuryk, IvanWe propose a generalized procedure of separation of variables for nonlinear wave equations and construct broad classes of exact solutions of these equations.Документ Generalized separation of variable for nonlinear equation utt=a(t)uxx+b(t)u2x+c(t)uutt=a(t)uxx+b(t)ux2+c(t)u(2015) Barannyk, Anatoliy; Barannyk, Tatiana; Yuryk, IvanWe propose a generalized procedure of separation of variables for nonlinear equations and construct broad classes of exact solutions of these equations that cannot be obtained by the classical Lie method and the method of conditional symmetries.Документ Generalized separation of variables and exact solutions of nonlinear equations(2010) Yuryk, IvanWe cosider the generalized procedure of separation of variables of the nonlinear hyperbolic-type equations. We construct a wide class of exact solutions of these equations.Документ Generalized separation of variables for nonlinear equations(2011) Yuryk, IvanWe propose a generalized procedure of separation of variables for nonlinear equations and construct broad classes of exact solutions of these equations that cannot be obtained by the classical Lie method and the method of conditional symmetries.Документ Generalized separation of variables for nonlinear equationutt = F(u)uxx + aF′(u)u2х(2013) Yuryk, IvanWhere F(u), a#0 are an arbitrary function and constant, correspondingly. The problem is studied for which functions F(u) it admits ans¨atz t = w1(x)d(u) + w2(x), which reduces this equation to a system of two ordinary differential equations with unknown functions w1(x) and w2(x). For these equations classes of exact solutions with generalized separation of variables are constructed, which can not be obtained by the method of classical group analysis.Документ Improving the efficiency of mass-exchange between liquid and steam in rectification columns of cyclic action(2021) Buliy, Yuri; Kuts, Anatoly; Yuryk, Ivan; Forsyuk, AndriyThe purpose of the work was to determine the optimal time of residence of the liquid on the plates, the grade of extraction and concentration ratio of volatile impurities of alcohol and the specific consumption of heating steam in rectification columns of cyclic action. The studies were carried out in a rectification column, equipped with flaky plates with a variable free cross-section. Concentration of alcohol volatile impurities was determined by chromatographic method, the grade of their extraction and concentration ratio – by calculation method, other indicators – by commonly known methods. The maximum extraction of volatile impurities was being achieved in a rectification column, equipped with flaky plates containing turnaround sections connected to drive mechanisms, the action of which is occurred according to a given algorithm. The optimal parameters of operating the column were: vapor velocity in the orifices of the flakes during the period of liquid retention on the plates 12-14 m/s; during liquid pouring 1-1.5 m/s; time of residence of the liquid on the plates 40 s, pouring time 1.7 s; pressure in the lower part of the column 12 kPa; the concentration of ethyl alcohol in the still liquid 3-4% vol. In order to provide the cycles, the free sectional area of the plates must change instantaneously from 5.5 to 51.7%. This technical solution allows to provide complete disposal of ethers, methyl acetate and isopropyl alcohol, to increase the grade of extraction of higher alcohols of sivush oil and methanol by 38%, the concentration ratio of aldehydes by 25%, higher alcohols by 38%, methanol by 37%, and to reduce specific consumption of heating steam by 40% compared to a typical column operating in stationary mode.Документ Invariant solutions of a system of Euler equations that satisfy the Rankine–Hugoniot conditions(2018) Yuryk, IvanWe consider equations of hydrodynamics with certain additional constraints. Group-theoretical methods are applied to find invariant solutions of a system of Euler equations that satisfy the Rankine–Hugoniot conditions. Ми розглядаємо рівняння гідродинаміки з певними додатковими обмеженнями. Теоретико-групові методи застосовуються для пошуку інваріантних рішень системи рівнянь Ейлера, що задовольняють умовам Ренкіна-Гюгоніо.Документ Nonlinear boundary-value problem for the heat mass transfer model of w.Fushchych(1997) Bulavatskyi, V.; Yuryk, IvanWe find a numerical-analytic solution of a nonlinear boundary-value problem for the biparabolic differential equations,which describes the mass and heat transfer in the model W.Fushchych. Знайдено чисельно-аналітичний розвязок нелінійної крайової задачі для біпараболічного диференціального рівняння, яке описує тепло та масо переніс в моделі В.Фущича.Документ Nonlinear dalembert equation in the pseudo-euclidean space r2,n and its solutions(Springer Science, Ukr.Math.J., 2000) Yuryk, IvanWe investigate the nonlinear Dalembert equation in thepsevdo-euclidean space R2,n and construct nev exact solutions containing arbitrary functions. Досліджено нелінійне рівняння Даламбера в псевдо-евклідовому просторі R2,n і побудовано нові точні розвязки,які містять довільні функції.Документ On a new method for constructing exact solutions of the nonlinear differential equations of mathematical physics(1998) Barannyk, Anatoliy; Yuryk, IvanA new method for constructing solutions of multidimensionflnonlinear differential equations is proposed. Запропоновано новий метод побудови розвязків багатовимірних нелінійних диференціальних рівнянь.Документ On additional symmetries of multi-dimensional nonlinear d'Alembert equation(2013) Barannyk, Anatoliy; Yuryk, IvanWe study non-Lie symmetry of multi-dimensional nonlinear d'Alembert equation □u = F (u) in the space R2,n , n ≥ 2 by its reduction to two-dimensional equations. Вивчається неліївська симетрія нелінійнійного багатовимірного рівняння Даламбера □u=F(u) в просторі R2,n ,n≥2 шляхом його редукції до двовимірних рівнянь.Документ On exact solution of an equation of non linear acoustics(1998) Barannyk, Anatoliy; Yuryk, IvanNew classes of exact solutions of the multidimensional nonlinear acoustics equation are obtained. Отримані нові класи точних розвязків багатовимірного нелинійного рівняння акустики.Документ On exact solutions of nonlinear equation(2021) Yuryk, IvanA method for construction of exact solutions to nonlinear equation ut = (F(u)ux)x + G(u)ux + H(u) which is based on ansatz p(x) = ω1(t) φ(u) + ω2(t) is proposed. The function p(x) here is a solution of equation (p')2 = Ap2 + B, and the functions ω1(t), ω2(t) and φ(u) can be found from the condition that this ansatz reduces the nonlinear equation to a system of two ordinary differential equations with unknown functions ω1(t) and ω2(t). Запропоновано метод побудови точних розв’язків нелінійного рівняння т ut = (F(u)ux)x + G(u)ux + H(u), який ґрунтується на використанні підстановки p(x) = ω1(t) φ(u) + ω2(t), де функція p(x) є розв’язком рівняння (p')2 = Ap2 + B, а функції ω1(t), ω2(t) та φ(u) знаходяться з умови, що дана підстановка редукує рівняння до системи двох звичайних диференціальних рівнянь з невідомими функціями ω1(t) та ω2(t).Документ On exact solutions of the nonlinear heat equation(2019) Barannyk, Anatoliy; Yuryk, IvanA method for construction of exact solutions to nonlinear heat equation ut = (F(u)ux)x + G(u)ux + H(u) which is based on ansatz p(x) = ω1(t) φ(u) + ω2(t) is proposed. The function p(x) here is a solution of equation (p')2 = Ap2 + B, and the functions ω1(t), ω2(t) and φ(u) can be found from the condition that this ansatz reduces the nonlinear heat equation to a system of two ordinary differential equations with unknown functions ω1(t) and ω2(t). Запропоновано метод побудови точних розв’язків нелінійного рівняння теплопровідності ut = (F(u)ux)x + G(u)ux + H(u), який ґрунтується на використанні підстановки p(x) = ω1(t) φ(u) + ω2(t), де функція p(x) є розв’язком рівняння (p')2 = Ap2 + B, а функції ω1(t), ω2(t) та φ(u) знаходяться з умови, що дана підстановка редукує рівняння до системи двох звичайних диференціальних рівнянь з невідомими.