Статті

Постійне посилання на розділhttps://dspace.nuft.edu.ua/handle/123456789/7372

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Technology of lager and dark beers with chicory roots
    (2024) Buliy, Yuri; Mukoid, Roman; Parkhomenko, Anastasia; Kuts, Anatoly
    Chicory root (Cichorium intybus L.) contains valuable components such as inulin, inulides, bitter substances, pectin, and fibers and is a promising non-traditional raw materia The technology for light beer production was proposed, according to which light malt and dried crushed chicory roots taken in the amount of 4% of malt are used as raw materials, and at the stage of mashing the enzyme preparation inulinase with activity of 14 units/g was introduced into the mixture. For the hydrolysis of inulin at the mashing stage, an inulase pause was provided at a temperature of 55–56 °C for 20–30 minutes. The method allows increasing the content of reducing substances in the wort by 1.6%, the apparent and actual fermentation degree by 3.9%, the content of alcohol and carbon dioxide in the beer by 3.2 and 10%, respectively. The finished beer had increased foam resistance and higher foam height, while the introduction of chicory did not impart excessive and extraneous bitterness. The innovative technology of dark beer provides mixing of aqueous extract of roasted chicory with malt wort cooled to the temperature of 85–90 °С. It was found that the optimal mode of the extraction process was the temperature 85–90 °С, hydromodule 1:6, and duration 90 min. Beer with chicory content of 3% was the best in terms of physical, chemical, and sensory properties. The improved method allows to increase the content of reducing substances in wort by 1.5%, apparent and actual fermentation degree by 2.2 and 3%, respectively, to increase the content of alcohol in beer by 2.3%, and carbon dioxide by 3.2%. It was proved that partial replacement of malt by chicory allows to reduce consumption of bitter hops for light beers by 20% (from 14.8 to 12.0 g/dal) and for dark beers by 10% (from 10.3 to 9.3 g/dal).
  • Ескіз
    Документ
    Energy-saving rectification technology with controlled mass exchange cycles between liquid and vapor
    (2021) Buliy, Yuri; Kuts, Anatoly; Forsyuk, Andriy; Chumachenko, Sergii
    Purpose of the article: the definition of the hydrodynamic mode of operation of barbotage perforated plates, of the efficiency of the technology of cyclic rectification in the mass-exchange columns equipped with barbotage perforated plates with variable free cross-sectionin and determining the consumption of heating steam in the rectificational and epyuratin columns. Research methods - analytical, chemical, physico-chemical with the use of instruments and research methods used in the production of rectified ethyl alcohol. Fluid consumption was controlled with the help of flowmeter RM, air velocity in the free section of the column - anemometer MS-13, in the holes of the plates - by calculation method. The concentration of volatile impurities of alcohol was determined on a gas chromatograph with a column HP FFAP 50 m × 0.32 m. Analysis of research samples was performed according to the State Standard of Ukraine 4222:2003 "Vodka, ethyl alcohol and water-alcohol solutions. Gas chromatographic method for determination of microcomponents content". An energy-saving technology of cyclic rectification with a continuous supply of heating steam and liquid to a mass-exchange column apparatus equipped with flake plates is proposed. The innovative method allows to prolong the time of contact of steam and liquid on plates up to 40-60 s and to reduce the time of overflow up to 1-1,7 s. In order to implement the technology, a rectification column design was proposed, equipped with flake plates with variable free cross-section.
  • Ескіз
    Документ
    Improving the efficiency of mass-exchange between liquid and steam in rectification columns of cyclic action
    (2021) Buliy, Yuri; Kuts, Anatoly; Yuryk, Ivan; Forsyuk, Andriy
    The purpose of the work was to determine the optimal time of residence of the liquid on the plates, the grade of extraction and concentration ratio of volatile impurities of alcohol and the specific consumption of heating steam in rectification columns of cyclic action. The studies were carried out in a rectification column, equipped with flaky plates with a variable free cross-section. Concentration of alcohol volatile impurities was determined by chromatographic method, the grade of their extraction and concentration ratio – by calculation method, other indicators – by commonly known methods. The maximum extraction of volatile impurities was being achieved in a rectification column, equipped with flaky plates containing turnaround sections connected to drive mechanisms, the action of which is occurred according to a given algorithm. The optimal parameters of operating the column were: vapor velocity in the orifices of the flakes during the period of liquid retention on the plates 12-14 m/s; during liquid pouring 1-1.5 m/s; time of residence of the liquid on the plates 40 s, pouring time 1.7 s; pressure in the lower part of the column 12 kPa; the concentration of ethyl alcohol in the still liquid 3-4% vol. In order to provide the cycles, the free sectional area of the plates must change instantaneously from 5.5 to 51.7%. This technical solution allows to provide complete disposal of ethers, methyl acetate and isopropyl alcohol, to increase the grade of extraction of higher alcohols of sivush oil and methanol by 38%, the concentration ratio of aldehydes by 25%, higher alcohols by 38%, methanol by 37%, and to reduce specific consumption of heating steam by 40% compared to a typical column operating in stationary mode.