Статті

Постійне посилання на розділhttps://dspace.nuft.edu.ua/handle/123456789/7372

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Thermodynamic analysisof sugar production heattechnological complex:analysis method
    (2020) Vasylenko, Sergei; Samiilenko, Serhii; Bondar, Vladimir; Bilyk, Olena
    The object of research is the heat-technological systems of sugar production and the heat-technological complex as a whole. A modern sugar factory is a complex hierarchical system of inextricably interconnected elements, and its basis – a heat-technological complex – combines the elements of technological, heat transfer, and mechanical equipment, in which complex physicochemical processes are simultaneously realized, closely interacting. Given the complexity of the internal relationships of processes, their parameters and characteristics, it is necessary to systematically approach the analysis of real functioning, performance evaluation and the solution of optimization problems of the complex as a whole, as well as its individual subsystems and elements. In this work, it is proposed a method for thermodynamic analysis of the heat-technological complex of sugar production as a single thermodynamic system, which allows to analyze the main factors influencing the energy efficiency of the complex regardless of the course of processes implemented within the system. The methodology is based on a joint analysis of the general synthetic and analytical balances of mass, energy and entropy. This model has a deep physical foundation, because the material balance equation is an integral form of the law of conservation of the quantity of matter, the energy balance equation is an integral form of the first law of thermodynamics, and the entropy balance equation is an integral form of the second law of thermodynamics. The main objective of the methodology is a quick assessment of the excellence of the heat-technological complex and its definition of “energy-saving potential”. Also, the application of the principle of energy compensation of irreversibility and entropy criteria allows to determine the sources and causes of system imperfections, and imperfections are compiled to help develop a system of measures to increase the efficiency of the optimal sequence complex. Therefore, the proposed methodology of thermodynamic analysis, in contrast to the methods based on exergy characteristics, provides a comprehensive analysis, operating only with the fundamental laws and principles of classical thermodynamics. It can also be used both to optimize the energy characteristics of existing ones and to design new sugar industry enterprises
  • Ескіз
    Документ
    Thermodynamic analysis of the thermal-technological complex of sugar production: the energy and entropy characteristics of an enterprise
    (2020) Vasylenko, Sergei; Samiilenko, Serhii; Bondar, Vladimir; Bilyk, Olena; Mokretskyy, Vitaliy; Przybylski, Wlodzimierz
    This paper reports the approbation of a procedure of thermodynamic analysis of the thermal-technological complex of sugar production using the analysis of an enterprise of typical configuration as an example. Currently, the thermodynamic analysis of sugar production systems is mainly performed on the basis of a classical energy method. Minor attempts to exploit the potential of the second law of thermodynamics in the form of the adaptation of an exergy method are not systemic. Underlying the applied procedure is a joint analysis of general synthetic and analytical balances of mass, energy, and entropy. Such a procedure makes it possible to quantify the level of perfection of the existing and proposed thermal circuits, as well as the impact exerted on their perfection by energy efficiency measures, and it could be applied both to optimize the energy characteristics of the existing ones and in designing new enterprises of the sugar industry. It has been shown that the thermodynamic analysis of the thermal-technological complex of sugar production as a single system makes it possible to analyze the main factors of influence on the energy efficiency of the complex disregarding the course of the processes implemented therein. Such an approach can also be effectively used for the quick evaluation of the thermodynamic perfection of an enterprise and for determining its «energy-saving potential». Based on the results of energy analysis, the relationship has been established between the fuel and energy resources, supplied to the system, and the sources of their losses; a set of measures has been proposed to reduce the impact of each of these factors on resource consumption. Entropy analysis has revealed the internal and external causes of the irreversibility of processes; the principle of «energy irreversibility compensation» has made it possible to compile a rating of major imperfections and determine the optimal sequence of resource-saving measures. The results of the analysis have confirmed the efficiency of the procedure, which allows a comprehensive study, while operating only with the fundamental laws and the principles of classical thermodynamics, as opposed to procedures, based on energy-exergy characteristics