Статті

Постійне посилання на розділhttps://dspace.nuft.edu.ua/handle/123456789/7372

Переглянути

Результати пошуку

Зараз показуємо 1 - 7 з 7
  • Ескіз
    Документ
    On exact solutions of the nonlinear heat equation
    (2019) Barannyk, Anatoliy; Yuryk, Ivan
    A method for construction of exact solutions to nonlinear heat equation ut = (F(u)ux)x + G(u)ux + H(u) which is based on ansatz p(x) = ω1(t) φ(u) + ω2(t) is proposed. The function p(x) here is a solution of equation (p')2 = Ap2 + B, and the functions ω1(t), ω2(t) and φ(u) can be found from the condition that this ansatz reduces the nonlinear heat equation to a system of two ordinary differential equations with unknown functions ω1(t) and ω2(t). Запропоновано метод побудови точних розв’язків нелінійного рівняння теплопровідності ut = (F(u)ux)x + G(u)ux + H(u), який ґрунтується на використанні підстановки p(x) = ω1(t) φ(u) + ω2(t), де функція p(x) є розв’язком рівняння (p')2 = Ap2 + B, а функції ω1(t), ω2(t) та φ(u) знаходяться з умови, що дана підстановка редукує рівняння до системи двох звичайних диференціальних рівнянь з невідомими.
  • Ескіз
    Документ
    Exact solutions to nonlinear equation of utt=a(t)uuxx+b(t)u2x+c(t)u
    (2018) Barannyk, Anatoliy; Barannyk, Tatiana; Yuryk, Ivan
  • Ескіз
    Документ
    Побудова точних розв’язків нелінійних рівнянь гіперболічного типу
    (2017) Баранник, Анатолій Феодосійович; Баранник, Т. А.; Юрик, Іван Іванович
    Розглянуто підстановки, які редукують рівняння до системи звичайних диференціальних рівнянь. Запропоновано ефективний метод інтегрування редукованих систем. Показано, що їх інтегрування зводиться до інтегрування системи лінійних рівнянь. Substitutions that reduce the equation to a system of ordinary differential equations are considered. An effective method to integrate the corresponding reduced systems is proposed. It is shown that their integration can be reduced to integration of system of linear equations, where and are arbitrary predefined functions.
  • Ескіз
    Документ
    Точні розв’язки нелінійного рівняння
    (2017) Баранник, Анатолій Феодосійович; Баранник, Тетяна Анатоліївна; Юрик, Іван Іванович
    Знайдено анзаци, що редукують рівняння до системи двох звичайних диференціальних рівнянь. Також показано, що задача побудови точних розв’язків вигляду цього рівняння зводиться до інтегрування системи лінійних рівнянь, де та - довільні наперед задані функції. Ansatzes that reduce the equation to а system of two ordinar differential equations are defined. Also it is shown that the problem of constructing exact solutions of the form , to this equation, reduces to integrating of a system of linear equations,where and are arbitrary predefined functions.
  • Ескіз
    Документ
    Рівняння теплопровідності для однорідного стрижня з коефіцієнтом дифузії рівним одиниці
    (2012) Островська, Ольга Володимирівна; Юрик, Іван Іванович
    Робота присвячена побудові точних розв'язків рівняння Ut =Uхх. Як відомо, це рівняння теплопровідності для однорідного стрижня з коефіцієнтом дифузії рівним одиниці. Використовуючи класичний метод відокремлення змінних, тобто підстановку и = а(х)Ь(ї), раніше отримані точні розв'язки. Для нових розв'язків в даній роботі запропоновано узагальнену процедуру відокремлення змінних. Це дало можливість отримати принципово нові точні розв'язки цього рівняння, які неможливо отримати з використанням класичного методу С. Лі, або методу умовних симетрій. Работа посвящена построению точных решений уравнения и, = х. Как известно, это уравнение теплопроводности для однородного стержня с коэффициентом диффузии равным единице. Используя классический метод разделения переменных, т.е. подстановку и = а (х) Ь (и), ранее полученные точные решения. Для новых решений в данной работе предложено обобщенную процедуру разделения переменных. Это дало возможность получить принципиально новые точные решения этого уравнения, которые невозможно получить с использованием классического метода С. Ли, или метода условных симметрий. The work is devoted to the construction of exact solutions of the equation u, = s. As you know, This heat equation for a homogeneous core of the diffusion coefficient equal to one. Using the classical method of separation of variables, ie substitution and = a (x) b (s) previously obtained exact solutions. For new solutions in This paper presents a generalized process of separation of variables. It gave opportunity to gain entirely new exact solutions of this equation that can not be obtained using the classical method S. Lee, or method of conditional symmetries.
  • Ескіз
    Документ
    Generalized separation of variables for nonlinear equationutt = F(u)uxx + aF′(u)u2х
    (2013) Yuryk, Ivan
    Where F(u), a#0 are an arbitrary function and constant, correspondingly. The problem is studied for which functions F(u) it admits ans¨atz t = w1(x)d(u) + w2(x), which reduces this equation to a system of two ordinary differential equations with unknown functions w1(x) and w2(x). For these equations classes of exact solutions with generalized separation of variables are constructed, which can not be obtained by the method of classical group analysis.
  • Ескіз
    Документ
    Separation of variables for nonlinear equations of hyperbolic and korteweg-de Vries type
    (2011) Yuryk, Ivan
    We propose substitutions that have been used for construction of wide classes of exact solutions with the generalized separation of variables for nonlinear eguations of the hyperbolic and Korteweg-de Vries type (KdV-type). These solutions cannot be obtained by means of S.Lie method or by the method of conditional symmetries.