THEOREM ON THE ESTIMATION OF THE EST APPROXIMATIONS FOR THE GENERALIZED DERIVATIVE IN BANACH SPACES

Olena Radziyevska¹, Iryna Kovalska²

¹ National University of Food Technology, Kyiv, Ukraine
² Kamianets-Podilskyi National Ivan Ohienko University, Kamianets-Podilskyi, Ukraine

radzlena58@gmail.com, ir-kov@ukr.net

We consider a Banach space B with a complete minimal system $\{\varphi_m\}_m^\infty$ and let $\{\varphi_m^*\}_m^\infty$ be its conjugate system belonging to B^* and $\{\lambda_m\}_m^\infty$ is a sequence of complex numbers. Let us introduce the following notion

Definition. If for the element $f \in B$ the sum of the series $\sum_{m=1}^{\infty} \lambda_m(f, \varphi_m^*) \varphi_m$ is some element $g \in B$, then the vector g is called the derivative of the vector f and is denoted by $\partial_{\varphi}^{\lambda} f$, namely

$$\partial_{\varphi}^{\lambda} f = \sum_{m=1}^{\infty} \lambda_m (f, \varphi_m^*) \varphi_m \tag{1}$$

. The subset of all vectors $f \in B$ having $\partial_{\varphi}^{\lambda} f$ - derivatives will be denoted by $V(\partial_{\varphi}^{\lambda})$. Vector

$$T_n(\varphi_n) = \sum_{m=1}^n c_m \varphi_m \tag{2},$$

where c_m are arbitrary complex numbers, we will call a polynomial of degree n according to the system $\{\varphi_m\}_m^\infty$. Note that due to the system $\{\varphi_m\}_m^\infty$ is minimal therefor the coefficients c_m in (2) are uniquely determined by the vector $T_n(\varphi_n)$ and $c_l = (T_n(\varphi_n), \varphi_m^*)$.

Let $E_n(f, \varphi_m) = \inf_{T_n(\varphi)} ||f - T_n(\varphi_n)||$ be the best approximations of the vector f by polynomials of degree n over the system $\{\varphi_m\}_m^\infty$ and $\mu_n(\partial_{\varphi}^\lambda) = \sup_{||T_n(\varphi_m)||=1} ||\partial_{\varphi}^\lambda T_n(\varphi_m)||, n = 1, 2, ...$

In these notations, we have

Theorem. If for some increasing sequence of natural numbers $\{n_i\}_i^\infty$ the series $\sum_{i=1}^\infty \mu_{n_{i+1}}(\partial_{\varphi}^\lambda) E_{n_i}(f,\varphi)$ converges. Then $f \in V(\partial_{\varphi}^\lambda)$ and

$$E_{n_j}(\partial_{\varphi}^{\lambda}f,\varphi) \le 2\sum_{i=j}^{\infty} \mu_{n_{i+1}}(\partial_{\varphi}^{\lambda})E_{n_i}(f,\varphi)$$