MATERIÁLY IX MEZINÁRODNÍ VĚDECKO - PRAKTICKÁ KONFERENCE «VĚDA A TECHNOLOGIE: KROK DO BUDOUCNOSTI - 2013» 27 února - 05 březen 2013 roku Díl 23 Ekologie Zeměpis a geologie Chemie a chemická technologie Praha Publishing House «Education and Science» s.r.o 2013 Semenova O., Bubłienko IS., Pastushenko A., Shylofost T. National University of Food Technologies THE TREATMENTOF WASTE WATER FROM OIL HYDROCARBONS Amongst all the wastewater categories,those which pollute water basin are mostly of crude oil refining nature. They are formed on vessels and at all enterprises, including food processing plants.Their cleaning process needs establishingof the local sewage treatment plants. Moreover, the tempos of oily wastewatertreatment are very slow. Wastewater is formed at every company, including the food industry, through equipment andautomobile tanks washing and technical lubricants soaking. Such waste water should not be mixed with other types of wastes, so they need to be cleaned separately. This Term paper presents the results of research on the treatment of industrial wastewater from petroleum hydrocarbons. The investigations allowed to estimate the phase pollution structure and to sys- temize the succession and types of processes taking place at the biochemical decom- position of oil under aerobic conditions under the influence of natural water basin mi- croorganisms. The following processes are taking placeunder these conditions: dispersion of petroleum products in water, their adsorption into suspended solids, dispersions in water, agglomeration of fractions due to coalescence and sedimentation. Moreover, mostly all of the petroleum products fractions yield to the biochemi- cal oxidation which, in its turn, is held with different speed [ 1]. As soon as the petroleum products in wastewater are in soluble form or in the form of small fractions, the problem of treatmentcannot be solved in full. That is the reason why, in order to ensure the compliance with water quality standards it is necessary to develop more sophisticated ways of wastewater treatment 14 «Věda a technologie: krok do budoucnosti - 2013» »Díl 23. Ekologie from all pollution fractions, therefore, the most reliable of them is the utilization of dissolved and digestible fractions by means of biochemical oxidation. The proper observance of biochemical treatment technology provides virtually complete removal of petroleum products, which cannot be achieved by any other known method (mechanical and physico-chemical). Purified water meets the requirements and other parameters: BOD (Biochemical oxygen demand), COD (Chemical oxygen demand), suspended solids, pH, concentra- tion of pathogenic bacteria etc.). Thereby, the most promising method is the further development and improve- ment of biochemical treatment, eliminating of its defects, which can be achieved by means of reduced time of the wastewater processing, improving of the reliability and stability of treatment plants as well asincreaseof the cleaning effect by creating flow sheets using a modification of the process, taking into consideration the characteris- tics of the wastewater of crude oil refining nature [2]. According to the statistical treatment of the wastewater of crude oil refining na- ture, the pollution concentration for COD averages 300 mgO2/dm3 for BOD - 130 mg02 dm3 . According to these data, the ratio of BOD/COD = 0.43, which indicates the possi- bility to characterize the pollutionof this waste water category as a biochemical oxida- tion, howeverthe petroleum products consumption by microorganisms is less intensive. Regulatory quality index ofoily wastewater treatment is calculatedas PPconcen- tration. In order to adjust these parameters it is important to know which major groups of substances compose oily wastewater pollution,suggested being treated by bio- chemical means. For this purpose, due to the lack of published data, we conducted an experimen- tal calculation of oily wastewater pollution structure by means of organic matters. The results of this investigation can be seen in Table 1. Table 1 The results of chromatographic separation of oily waste water sample The major hydrocarbon fractions structure is as follows: paraffin naphthenes were paraffin constitute 62%, naphthenes - 38%, 14.7% of which are monocyclic, 15 Weigh of the samplesubjected to separation, g The hydrocarbon fractions output(in% bymass) Paraffm- naphthenes Aromatic Resinous Separation loss 0,2532 58,21 28,51 4,38 8,90 0,2498 58,21 28,58 4,04 9,17 0,2512 57,17 28,50 3,86 10,47 Average index 57,86 28,53 4,09 9,51 Time, min The decrease of oxygen concentration in samples measured in mg/dm3/min within discretestretch of time (20 min) in the presence of petroleum products concentration (mg/dm3) Without adding PP 40 60 80 0 0,0435 0,064 0,244 0,151 20 0,085 0,140 0,460 0,426 40 0,125 0,225 0,730 0,675 60 0,186 0,315 0,880 0,915 80 0,205 0,360 1,070 1,102 100 0,215 0,420 1,315 1,252 120 0,250 0,515 ----- ---- Materiály IX mezinárodní vědeckó-pra^tická kbnfěrence '' bicycíic constitute 14.4% and tricyclic - 8.9%; aromatic hydrocarbons consist ofál- kylbenzene -23.4%, indany and terakiny - l6.46/o,dinaftenbenzene - 11.7%, naphtha-1 lene - 24.1%, acenaphthene - 9.3% fluorene - 4.8% phenanthrene - 6.4% pyrene - 2.7% benzthiophene - 0.4% naphthalene-benzthiophene - 0.8%. According to the results of mass spectrometry investigation, the petroleum products in the given waste water sample correspond the weight of petroleum paraffin or light oil fraction i. e. they can be oxidized by means of microorganisms which belong to the Rhodococcus, Pseudomonas, Micrococcus and Acinetobactergenera. The intensification of aeration facilities for biochemical treatment is carried out by the improvement of contacting reacting phases (impurities, sludge, oxygen) in or- der to intensify both the mass transfer processand the its speed [3]. The objects of investigation were waste water samples with the following in-' dexes:Petroleum products concentration - 80 mg/dm3, COD - 300 mh02/dm3, BOD - 130 mh02/dm3, suspended matter - 125 mg/dm3, pH 6.9 - 7.3, nitrogen ammonium" salts - 36 mg/dm3, nitrites - 0.298 mg/dm3, nitrates - 0.25 mg/dm3. The speed of biochemical oxidation of contaminantswas measured in order to estimate the opportunities of hardware design process. Since the amount of pollutants in waste water which are oxidized by means of adapted activated sludge is proportional to the amount of oxygen used in the activated sludge process of oxidation (metabolism), the maximum speed of pollutants' bio- chemical oxidation process was expressed by themaximum speed of oxygen usage, which was measured by a portable measuring device the Oxi ЗЗОі that investigates the dissolved oxygen in the water. Table 2 presents the investigation dataon intensity of oxygen consumption by sludge mixture via Oxi 330i. Table 2 Thedata of experimental investigation on intensity of oxygen consumption by sludge mixture via Oxi ЗЗОі. «Věda a technologie: krok 4o budoucnosti - 2013» » Dii 23. Ekologie As it can be seen from the Table 2, the more NP concentration is, the more is speed of the process, but when the concentration is 60 ... 80mg/dm3the increase is inconsiderable. The possibility of biochemical treatment of oily waste water and its main pa- rameters were investigated by means of reactor-mixer. The main parameters of waste water biochemical treatment technology were de- termined. The main parameters of contaminants removal process which are carried out by means of in aeration facilities are the speed of the removal process, oxygen consumption and the adapted activated sludgeincrease. The speed of the removal process is measured in BOC (biochemical oxygen consumption), the unit of ash-free matter of activated sludge that is removed within the unit of time (mg/hour). These parameters are under the influence of the ability to subside, which is measured in Sludge index - capacity (cm3). The capacity takes 1 g of sludge after 30 min sedimentation in measuring cylinder. The level of sludge activity was taken as the main biochemical characteristic that is expressed through DHO (dehydrogenase) activity. The DHO (dehydrogenase) activity is defined by the concentration of formazan which is created as the result of chemical reaction between sludge and tritanetetra- zoles chloride (TTC). In such a way the concentration of formazan is represented as ratio of formazan to ash-free matter of activated sludge. The methods of ether-soluble substances and hydrocarbons calculation were used for the determination of waste water quantitative structure During the perpetual work of the cleaning facility within the 12 hours of aera- tion length in running mode, the contaminants' concentration according to BOC5during three dubbed working cycles reduced from 130 to 22,86 mg02/dm3i.e. by 82,42% which shows the incomplete biochemical treatment. The approximation of hyperbolic functions data by means of the smallest quad- rates testifies the limiting quality of purified water according to COD (chemical oxy- gen consumption) - 32,86mh02/dm and the highest possibleefficiency according to COD - 89,05% (with COC average index 300 mg02/dm3); according to petroleum products - 88,5 %, with the highest possible contents of petroleum products in puri- fied water - l,4mg/dm3. Although the cleaning efficiency according to BOC5 and COD does not comply with the complete biochemical purification process, the efficiency of petroleum prod- ucts removalappeared to be high enough [4]. As it can be seen from the investigation, thehighly oxidized substancesof con- taminants are removed relatively quicklywithm a single-stage treatment in a simple reactor-mixer, but their small number makes it impossible to get a high cleaning effi- ciency through thehardly oxidized substances existent in oily wastewater. 17 Materiály IX mezinárodni vždecko-praktická konference The increase of contaminant removal efficiency for COD during biomass growth probably indicates the presence of soiption processes by which activated sludge re- movesthehardly oxidized, emulsified and coarse impurities. Bibliography: 1. Жмур Н.С.Технологические и биохимическиепроцессы очистки сточ- ных вод на сооружениях с аэротенками. - М.: Акварос, 2003. - 512 с. 2. Муравьев АГ. Руководство по опредепению показателей качества водь полевыми методами. ~ СПб.: Крисмас, 2004. -248 с. 3. Пашаян А.А. Анализ существующих методов очистки нефтесодержа- щихсточных вод / Пашаян А.А., Нестеров А.В. // Вклад ученых и специалистов в нац.экономику:материалырегион.науч.-техн.конф. / Брян.гос.инженер.- технол.акад. - Брянск, 2005. - Т.2.-С. 74 - 77. 4. UngureanuD, Balmuę L. Biologicalwastewatertreatmentusingflxedfilm. In: «Inova- tionsinthefieldofwatersupply, sanitalionandwater». PaperofConferenceoftheyongscientistsantdreseachers.Bucrest 15-17 June 2005, p.p. 97-102. «Vida a technologie: krok do budoucnosti - 2013» »Pil 23 OBSAH EKOLOGIE EKOLOGICKÝ PROBLÉMU VELKÝCH MĚST Потапов A.B. Мониторинг городской жизни - ключевой элемент безопасности населения 3 Кадиргалнева Ж.Б., Байжиенова С.М., Обезьянова С.Н. Экологические проблемы Западно-Казахстанской области 6 PRŮMYSLOVÁ EKOLOGIE A LÉKAŘSTVÍ PRÁCE Khmarska MM, Saluk AI. Environmental modernization of the alcohol industry ...,:....9 Еличев К .А., Пинт Э.М., Романенко И.И. Методика и результаты обследования полигонов твердых бытовых отходов 12 Semenova О., Bublienko N., Pastushenko A., Shylofost Т. The treatmentof waste water from oil hydrocarbons 14 PROBLÉMU EKOLOGICKÉHO VÝCHOVY MLÁDEŽÍ Богданов P. Екологічна освіта, як ланка неперервної екологічної освіти у вищій школі 19 Молдумарова Ж.К., Ахаева А,А. Экология мздениетін студентгіц жеке тулгасын злеуметтендіру факторы ретінде калыптастыру 25 EKOLOGICKÉ MONITOROVÁNÍ Елисов А.Н., Ерофеева И.А., Искра Т.Д. Лишайники основных древесных пород города Саратова (на примере природного парка Кумысная поляна) 29 Цандекова ОЛ. Накопление пигментов в хвое сосны обыкновенной в условиях Кедровского угольного разреза 32 Rodriges Zalipynis R.A. Risks of air pollution by aerosols over the territory of Europe ..35 ZEMĚPIS A GEOLOGIE BIOGEOGRAFIE, BIO - MNOHOTVÁRNOST Stolyarov V.V. Skarns formation stages at the Eastern part of mineragenetic zone of the Frontal Ridge, North Caucasus 42 101 Materiály IX mezinárodní vědecko-praktická konference TECHNIKA A TECHNOLOGIE ZÍSKÁVÁNÍ UŽITKOVÝCH NEROSTŮ Nurtaeva A., Toleshova M.T. Soil as an essential component 46 HOSPODÁŘSKÝ ZEMĚPIS Бірижова H.B., Теплицька M.B. Сучасний стан розвитку транспортного машинобудування України 49 CHEMIE A CHEMICKÁ TECHNOLOGIE POLYMERÁT MATERIÁLY Пірімова Э.Р. Гэа-ба негізіндегі сополимерлердін бетгік белсенді касиепері 52 Фролова Ю.В., Федотова А.В. Санитарно-химические и токсикологические исследования наномодифицированных полимерных покрытий для пищевых продуктов 53 Борозна В.Д., Буркин А.Н., Дмитриев А.П. Оценка формовочных свойств материалов для заготовок верха обуви .57 TEORETICKÁ CHEMIE Егорова Л.М., Веретено Н. Экологические аспекты технологии травления сплавов меди 62 VÝROBA ZDRAVOTNICKÝCH PREPARÁT Карагулов Х.Г., Евсеева С.Б. Качественный состав шрота Тамбуканской грязи и перспективы его использования 65 ZÁKLADNÍ PROBLÉMU ZŘÍZENÍ NOVÉ MATERIÁLŮ A TECHNOLOGIÍ Есиркепова M.M. Битумы нефтяные, состав, структура и свойства 68 Алыкова Т.В., Антонова А.К., Зверева М.А., Алыков С.Н. Сульфаты в воде и почвах Астраханской области (результаты анализов за 2008-2012 гг.) 71 Румянцева EJ1., Белецкая В.А. Влияние поликомпонентной гипсосодержащей суспензии на реологию цементных дисперсий 78 Политова Н.К., Бешлей И.В., Пшунетлева Е.А., Ширшова Т.И., Володин В.В. Лекарственные препараты на основе фитоэкдистероидов 81 102 «Věda a technologie: krok do budoucností - 2013» • Dii 23 Фазылов С.Д., Нуркенов O.A., Амерханова Ш.К., Толепбек И.С., Аринова А.Е. Новые стирилпроизводные на основе 4-(4-метоксифенил) 6-метил - 2-тиоксо-1,2,3,4-тетрагидропиримидин - -5-карбоксилатов 92 Сатпаева Ж.Б., Нуркенов О.А., Фазылов С.Д., Турсынова А.К. Синтез и противовоспалительная активность 5-(морфолинометил)~ 1,3,4-тиадиазол-2(31і)-тиона 94 Nurkenov О.А., Fazylov A.S., Ahmetkarímova Zh.S., Ermuchanbetova RA., Satpaeva Zh.B., Muldahmetov Zh.H. Synthesis and structure n-aminozilglykozides by the n-aminoacetophenon 97 103