Зінькевич, Петро ОлексійовичБалюта, Сергій МиколайовичКуєвда, Юлія Валеріївна2023-11-242023-11-242022Зінькевич, П. О. Порівняльний аналіз методів короткострокового багатокрокового прогнозування електричного навантаження / П. О. Зінькевич, С. М. Балюта, Ю. В. Куєвда // Наукові праці НУХТ. – 2022. – Т. 28, №1. – С. 77-93https://dspace.nuft.edu.ua/handle/123456789/41642Багатокрокове прогнозування електричного навантаження (ПЕН) дає змогу передбачити багатоетапне споживання електроенергії в майбутньому. Багато-крокове ПЕН використовується для керування електроспоживанням і забезпе-чення енергоефективних режимів функціонування систем електрозабезпечення промислових і цивільних об’єктів. У статті досліджено математичні моделі на основі статистичних методів і методів штучного інтелекту для прогнозування електричного навантаження (ПЕН) промислових підприємств на багато кроків уперед. Опрацювання літера-тури показало, що для багатокрокового короткострокового ПЕН розроблено відносно невелику кількість статистичних методів і методів штучного інте-лекту. Найбільш перспективними методами ПЕН, які забезпечують точність прогнозування можна вважати такі: авторегресивна інтегрована модель ков-зного середнього (ARIMA) та адаптивна система нейро-нечіткого висновку (ANFIS). Для порівняння методів ARIMA та ANFIS було вибрано статистичний метод: «наївний» прогноз. З метою вибору методу ПЕН, який найбільшою мірою забезпечить вирішення завдань керування електроспоживанням та електро-постачанням, були проведені розрахункові дослідження з використанням вказа-них методів ПЕН. Особливістю прогнозування з використанням ANFIS є враху-вання такого екзогенного фактора, як час доби. Об’єктом дослідження є методи ПЕН, які проводилися на основі виміряних даних електричного навантаження промислового підприємства з виготовлення пластмасових виробів. Вимірювання проводилися щоденно з 01 квітня 2015 року по 01 травня 2015 року (з урахуванням святкових та вихідних днів) що пів години (відповідно 48 вимірювань на добу). Для оцінки якості моделей прогнозування використовувалися стандартні величини: середньоквадратична похибка (RMSE) та середня абсолютна похибка (MAPE). Розрахункові дослідження виконані у програмному середовищі MATLAB 2020b з набором інструментів: Fuzzy Logic Toolbox та Econometrics Toolbox. З використанням методів ARIMA, «наївного» прогнозу та адаптивної систе-ми ANFIS розроблені моделі ПЕН для багатокрокового ПЕН. Результати роз-рахункових досліджень показали, що прогнозування з використанням моделі ARIMA (4,1,2) для тестової вибірки забезпечує найменшу похибку RMSE — 0,052, похибка MAPE — 0,035. У подальших дослідженнях планується розробка моде-лей прогнозування вироблення електроенергії фотоелектростанціями (ФЕС) з інтелектуальними системами керування. Multi-step predicting of electrical load (PEL) allows to predict multi-stage electricity consumption in the future. Multi-step PEL is used to control power consumption and ensure energyefficient modes of operation of power supply systems of industrial and civil facilities. This paper investigates mathematical models based on statistical methods and artificial intelligence methods for predicting the electrical load (PEL) of industrial enterprises for many steps forward. A review of the literature sources showed that a relatively small number of statistical and artificial intelligence methods were developed for multi-step short-term PEL. The most promising PEL methods which provide the highest prediction accuracy are the following: autoregressive integrated moving average model (ARIMA) and adaptive neuro-fuzzy inference system (ANFIS). To compare the ARIMA and ANFIS methods, a statistical method was chosen: “naiveˮ predicting. In order to select the PEL method which will solve the problems of power consumption and power supply management, calculation studies were conducted using these PEL methods. A feature of predicting using ANFIS is to take into account such an exogenous factor as time of day. The object of the study are PEL methods, which were carried out on the basis of measured data of electrical load of an industrial enterprise for the manufacture of plastic products. Measurements were performed daily from April 1, 2015 to May 1, 2015 (including holidays and weekends) every half an hour (48 measurements per day, respectively). To assessthe quality of predicting models, a standard value was used: standard error (RMSE) and average absolute error (MAPE). Calculation studies were performed using the software MATLAB 2020b, with a set of tools: Fuzzy Logic Toolbox and Econometrics Toolbox. PEL models for multi-step PEL were developed using ARIMA methods, a “naiveˮ predicting and an adaptive ANFIS system. The results of computational studies showed that the prediction using the ARIMA model (4,1,2) for the test sample provides the smallest error RMSE 0.052 and MAPE error 0.035. In further research it is planned to develop models for predicting electricity generation by photovoltaic power plants (PPP) with intelligent control systems.otherANFISARIMA«наївний» прогнозбагатокрокове короткострокове ПЕНметоди прогнозуваннякафедра електропостачання і енергоменеджменту“Naiveˮ predictingmulti-step short-term PELpredicting methodsПорівняльний аналіз методів короткострокового багатокрокового прогнозування електричного навантаженняArticle