Погорілий, Тарас Михайлович2015-02-272015-02-272014Погорілий, Т. М. Математичне моделювання процесу теплообміну / Т. М. Погорілий // Наукові праці НУХТ. – 2014. – Т. 20, № 4. – С. 165-173.https://dspace.nuft.edu.ua/handle/123456789/19598У статті представлено продовження створення математичної моделі процесу теплообміну між комірками сахарози та паровою бульбашкою. Геометрична модель, що була створена на основі комірчастої моделі і розглядалась для системи: кристал цукру меншої коміркиг-розчин сахарози меншої комірки-парова бульбашка-розчин сахарози більшої комірки-кристал цукру більшої комірки в тривимірному випадку, використовується й надалі. Але в даному випадку при переході від об'ємної моделі до двовимірної виділено саме ту прямокутну область, яка відповідає більшій комірці розчину сахарози. Саме для неї й розглядається аналітичний розв'язок нестаціонарної задачі теплопровідності в двовимірному випадку з неоднорідними розривними на одній із бічних сторін (лівій) і неперервними на всіх інших сторонах області граничними умовами другого роду та неоднорідною початковою умовою. The extension of study on creating mathematical model of heat transfer between the cells of sucrose and a vapor bubble is presented in this article. A geometric model, which was established on the basis of cellular models, is still used for the following system: sugar crystal of a smaller cell -sucrose solution of smaller cell - vapor bubble - sucrose solution of bigger cell — sugar crystal of bigger cells in three-dimensional case. However, in this case, the rectangular area which corresponds to the bigger cell of sucrose solution is pointed out during the change from two-dimensional to three-dimensional model. The analytical solution of the nonstationary problem of heat transfer in two-dimensional case with patchy discontinuous on one side (left) and continuous ones on all the other sides of the domain boundary conditions and inhomogeneous initial condition has been proposed in this study.otherкомірчаста модельтеплообміннестаціонарне рівняннярозривні граничні умовианалітичний розв’язокcellular modelheat transfernonstationary équationdiscontinuous boundary conditionsanalytical solutionкафедра технологічного обладнання та комп’ютерних технологій проектуванняМатематичне моделювання процесу теплообмінуArticle