The Second North and East European Congress on Food NEEFood – 2013 26 – 29 May 2013, Kyiv, Ukraine

26 – 29 May 2013, Kyiv, Ukraine

BOUNDARY INTEGRAL EQUATIONS FOR PROBLEMS ABOUT PLANE DEFORMATIONS OF LINEAR VISCOTLASTIC MEDIUM

Oleksiy Zinkevych¹, Oleksandr Neshchadym², Volodymyr Safonov³, 68 Volodymyrska Street, Kyiv, Ukraine

E-mail: zinkievich1953@mail.ru¹

The technological processes of food productions are often related to materials or raw material, mechanical properties of which are viscoelastic. In a plane viscoelastic area D(t), limited by the smooth reserved contour L(t) at $t \geq 0$ integro-differential equation of equilibrium is

$$\mu \Delta \vec{u}(\vec{y},t) + (\lambda + \mu) graddiv\vec{u}(\vec{y},t) - \mu \int_{0}^{t} q(t-\tau) [\Delta \vec{u}(\vec{y},\tau) + \frac{1}{3} graddiv\vec{u}(\vec{y},\tau)] d\tau + \vec{f}(\vec{y},t;\vec{u}) = \vec{0} \tag{1}$$

at the set tensions $\vec{p}_n(\vec{x},t)$ in contour point L(t). Explanatory notes: μ,λ are instantly-resilient steelg; Δ is Laplace operator; $\vec{u}(\vec{y},t)$ is a displacement vector; $\vec{f}(\vec{y},t;\vec{u}) = \rho_0 \vec{m}(\vec{y},t)[1-div\vec{u}(\vec{y},t)]$ ($\vec{m}(\vec{y},t)$ is mass force intensity, $\rho_0 = \rho(\vec{y},0)$ is material density, $\vec{y} \in D(t)$); $q(t) = ce^{-\beta t}t^{\alpha-1}$ is Rzhanicyn relaxation kernel ($\beta,c>0,\ \alpha\in(0,\ 1)$ are parameters of material); \vec{n} is a normal of the given contour point $\vec{x}\in L(t)$.

The solution of this problem is as a sum of partial solution of equation (1) and viscoelastics potentials of a $\frac{2}{3}$

simple layer:
$$\vec{u}(\vec{y},t) = \vec{u}[\vec{f}] + \sum_{k=1}^{2} \vec{e}^{k} \int_{0}^{t} d\tau \int_{L(\tau)} \vec{v}(l,\tau) \cdot \vec{v}^{(k)}(\vec{y} - \vec{x};t - \tau) dl$$
, (2)

where $\vec{v}^{(k)}(\vec{y}-\vec{x};t-\tau)$ is a fundamental solution of equation (1).

The substitution of expression (2) in a boundary condition results in the system of the second type integral equation in relation to a component of the sought vectorial density of potential $\vec{v}(l,t) \in L(t)$:

$$\pi v_1(l_0,t) + \int\limits_{L(t)}^{2} \sum\limits_{i=1}^{2} v_i(l,t) K_{1i}(l,l_0;t) \left| \frac{\partial \vec{x}(l,t)}{\partial l} \right| dl + \int\limits_{0}^{t} \tilde{k}(t-\tau) d\tau \int\limits_{L(\tau)}^{2} \sum\limits_{i=1}^{2} v_i(l,\tau) k_{1i}(l,l_0;t,\tau) \left| \frac{\partial \vec{x}(l,\tau)}{\partial l} \right| dl = \psi_1(l_0,t); (3)$$

$$\pi v_2(l_0,t) + \int\limits_{L(t)}^{2} \sum\limits_{i=1}^{2} v_i(l,t) K_{2i}(l,l_0;t) \left| \frac{\partial \vec{x}(l,t)}{\partial l} \right| dl + \int\limits_{0}^{t} \tilde{k}(t-\tau) d\tau \int\limits_{L(\tau)}^{2} \sum\limits_{i=1}^{2} v_i(l,\tau) k_{2i}(l,l_0;t,\tau) \left| \frac{\partial \vec{x}(l,\tau)}{\partial l} \right| dl = \psi_2(l_0,t),$$

where $K_{ij}(l,l_0;t)$ and $k_{ij}(l,l_0;t,\tau)$ are equation kernel; $\tilde{k}(t)$, $\psi_1(l_0,t)$ and $\psi_2(l_0,t)$ are the known functions. The method of "steps at times" is used for numerical calculations of the proved system of integral equation of the 2-nd type (3).

KEY WORDS Viscoelasticity, relaxation kernel, viscoelastic potential, fundamental solution, potential density, integral equation kernel.

Indicate type of presentation: \bigcirc Oral \Box Poster