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ABSTRACT 
 

The one-dimensional superlattice (SL) based on a monolayer graphene modulated by the Fermi 
velocity barriers is considered. We assume that the rectangular barriers are arranged periodically 
along the SL chain. The energy spectra of the Weyl-Dirac quasi-electrons for this SL are calculated 
with the help of the transfer matrix method in the continuum model. The Fibonacci quasi-periodic 
modulation in graphene superlattices with the velocity barriers can be effectively realized by virtue 
of a difference in the velocity barrier values (no additional factor is needed). And this fact is true for 
a case of normal incidence of quasi-electrons on a lattice. In contrast to the case of other types of 
the graphene SL spectra studied reveal the periodic character over all the energy scale and the 
transmission coefficient doesn’t tend asymptotically to unity at rather large energies. The 
dependence of spectra on the Fermi velocity magnitude and on the external electrostatic potential 
as well as on the SL geometrical parameters (width of barriers and quantum wells) is analyzed. The 
obtained results can be used for applications in the graphene-based electronics. 
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1. INTRODUCTION 
 
Graphene and the graphene-based structures 
draw the great attention of researchers in recent 
years. It is explained by the unique physical 
properties of graphene, and also by good 
prospects of its use in the nanoelectronics (see 
e.g. [1-4]). It is convenient to control the 
behaviour of the Weyl-Dirac fermions in 
graphene by means of the external electric and 
magnetic fields, and a lot of publications are 
devoted to the corresponding problem for this 
reason. Recently one more way of controlling the 
electronic properties of the graphene structures, 
namely by means of the spatial change of the 
Fermi velocity was offered [5-10]. Some ways of 
fabrication of structures in which the Fermi 
velocity of quasi-particles is spatially dependent 
value were approved [5,6]. This achievement in 
the technology opens new opportunities for 
receiving the nanoelectronic devices with the 
desirable transport properties. 
 
It is known that the solution of this problem can 
be promoted to the great extent by use of the 
superlattices. This explains the emergence of a 
number of publications in which the charge 
carriers behaviour in graphene superlattices of 
various types is investigated; these SL include 
the strictly periodic, the disordered ones, SL with 
barriers of various nature - electrostatic, 
magnetic, barriers of Fermi velocity (under which 
we understand the areas of graphene where 
quasi-particles have different Fermi velocity, 
smaller or bigger than in the pristine graphene). 
Among the specified works, there are some 
devoted to the quasi-periodic graphene SL [11-
15]. The quasi-periodic structures, as known, 
possess the unusual electronic properties of 
special interest (see e.g. [16]). 
 
Motivated by the circumstances stated above we 
formulate the purpose of this work as follows: to 
study the main features of the energy spectra of 
the quasi-periodical graphene-based Fibonacci 
superlattices with the velocity barriers. We 
choose the Fibonacci SL because they are 
considered as the classical quasi-periodic 
objects, and the majority of the works associated 
with research of the quasi-periodic systems deal 
merely with them.       
 

2. MODEL AND FORMULAE 
 
Consider the one-dimensional graphene 
superlattice in which regions with various values 

of the Fermi velocity are located along the 0x 
axis: elements a and b refer to � a and � b 

velocities respectively. Elements a and b are 
arranged along SL according to the Fibonacci 
rule so that, for example, we have for the fourth 
Fibonacci generation (sequence): s4=abaab. 
Generally, between the barriers corresponding to 
elements a and b, there is a quantum well for 
which the Fermi velocity is equal to unity as in a 
pristine graphene: �w=�0. 
 
As we consider graphene in which the Fermi 
velocity is dependent on the spatial coordinate �� 
i.e. �� = ������  the quasi-particles submit to the 
massless Weyl-Dirac type equation: 
 

−	ℏ�� ∙ 
 �������������� ������� = ������,         (1) 

 

where �� = ��� , ���  the Pauli two-dimensional 
matrix, ����� = �������, ��������  two-component 
spinor, T transposing symbol. Introducing an 
auxiliary spinor Ф���� = ������������  one can 
rewrite equation (1) as follows: 
 

−	ℏ�������� ∙ 
Ф���� = �Ф����.                        (2) 
 

Assume that the external potential consists of the 
periodically repeating rectangular velocity 
barriers along the axis 0x and potential is 
constant in each j-th barrier. The external 
electrostatic potential U may also be present and 
inside each barrier Uj(x) = const (piece-wise 
constant potential). In this case using the 
translational invariance of the solution over the 
0y axis it is possible to receive from the equation 
(2): 
 

��
ФА,В

��� + � !" −  �"�ФА,В = 0,                       (3) 

 
where indices A, B relate to the graphene 
sublattices A and B respectively,  ! =
$%&'(���)

*( , measurement units ℏ=�,=1  are 

accepted. If we represent the solution for 
eigenfunctions in the form of the plane waves 
moving in the direct and opposite direction along 
an axis Ox, we derive  
 

Ф�х� = ./!012(� 3 14!56 + 7!0&12(� 3 14!&68,        (4) 
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where  9! = : !" −  �"  for  !" >  �"  and 9! =
	: �" −  !"  otherwise, 4!± = �±9! + 	 � )vj/E, the 

top line in (4) pertains to the sublattice A, the 
lower one – to the sublattice B. 
 
The transfer matrix which associates wave 
functions in points x and x+∆x reads  
 

=! = >
?@A B( Ccos�9!∆H − I!� 	 sin�9!∆H�

	 sin�9!∆H� cos�9!∆H + I!�L,(5) 

 
where  
 

I! = arc sin 3OP
O( 6. 

 
Meaning that the Fermi velocity depends only on 
coordinate x, i.e. ����� = ��H� , it is possible to 
receive the boundary matching condition from 
the continuity equation for the current density as 
follows:  
 

��Qϕ�HQR& � = ��Rϕ�HQR5 �,           (6) 
 

where indexes b and w relate to a barrier and a 
quantum well respectively, xbw the coordinate of 
the barrier-well interface. The coefficient of 
transmission of quasi-electrons through the 
superlattice T(E) is evaluated by means of a 
transfer matrix method. Energy ranges for which 
the coefficient of electron transmission through  
the lattice is close to unity form the allowed 
bands while the energy gaps correspond to 
values T<<1. Since the specified procedure of 
obtaining the value of T(E) was described in 
literature repeatedly (see e.g. [7-14]) we have 
opportunity  to proceed with analyzing the 
obtained results. 
 
3. RESULTS AND DISCUSSION 
 
Unlike the energy spectra for the known quasi-
periodic superlattices, including the graphene 
ones (see e.g. [7,14,15]), the spectra of the 
graphene-based SL with the velocity barriers                   
are periodic over all the energy scale, and                       
the transmission rate T doesn’t tend 
asymptotically to unity at rather large energies. 
For comparison, dependences of log T(E) are 
given in Fig. 1(a) for the Fibonacci fourth 
generation for SL in which the quasi-periodic 
modulation is achieved due to different values of 
the Fermi velocity, and for SL on the basis of the 
gapped graphene in which the quasi-periodic 

modulation is due to different values of gaps 
(calculations are carried out on the basis of                  
our previous work [14], (Fig. 1(b)). The values                     
of the parameters are as follows: for the                    
first case w=1, d=2, � a=1, � b=2, for the                  
second case w=d=1, ∆a=1, ∆b=0, where                          
∆ denotes the gap’s width, d and w denotes                 
the barrier and the quantum well width 
respectively. All calculations (for all figures of this 
paper) were carried out for the case of the 
normal incidence of electrons on the superlattice. 
(Note that in accordance with the known 
Landauer-Buttiker formula the electrons with ky = 
0 make the main contribution to the 
conductance). 
 

 
(a) 

 

 
(b) 

 
Fig. 1. Dependence of log(T) on energy E for 
the SL modulated by: (a) different values of 

the Fermi velocity and (b) different 
magnitudes of the energy gaps 

 
It is seen that a certain periodicity of spectra 
takes place in the second case (this fact hasn’t 
been noted in the literature as yet) but the 
amplitude of peaks (and the corresponding gap’s 
width) decreases with increasing in E, on 
average. The allowed band width increases on 
average with E increasing and the coefficient of 
transmission T eventually approaches to unity. 
This "wavy damped oscillation" in Fig. 1(b) is 
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associated with such property of the spectra as 
their self-similarity (e.g. [14]). Note that the 
narrowing of gaps occurs very rapidly. 
Parameters for the spectra in Fig. 1 are chosen 
so as to show that their structure for the 
graphene SL of different nature may be similar. 
The difference of two spectra is explained by that 
the velocity barriers are dependent on energy [9]. 
If we make an analogy between tunneling of 
quasi-particles in graphene through a rectangular 
electrostatic barrier and tunneling through a 
velocity barrier, for the potential of the last it is 
necessary to write down  

 S��� = � − �/�U,                                   (7) 
 
in other words expressions for the transmission 
coefficient T in the specified cases coincide if the 
condition (7)  is satisfied. This formula explains 
the fact that spectra of T(E) for SL with the 
velocity barriers are periodic over all the energy 
scale. It is quite naturally that the expression for 
the transmission rates comprises the term that 
directly determines the spectra periodicity (see 
e.g. the recent papers [7,17,18]).   
 
Note further that the graphene superlattices with 
the velocity barriers are characterized by a rich 
variety of the energy spectra, and also by their 
high sensitivity to minor changes in geometrical 
parameters of a lattice. This statement is correct 
in relation not only to quasi-periodically 
modulated SL, but to strictly periodic lattices as 
well and it allows for controlling the energy 
spectra in a wide range. In the general case, i.e. 
for arbitrary values of the parameter values                
the energy spectra demonstrate a set of 
irregularly spaced of allowed and forbidden 
bands. However for some sets of the parameter 
values spectra are regular and it is natural to 
take them for analysis in the first place; examples 
of such spectra are shown in figures of this paper. 
(The same conclusion in relation to the strictly 
periodic SL with the velocity barriers was done in 
[18,19]). 
 
Apparently, depending on the parameters of the 
problem under consideration spectra may differ 
from each other significantly; they can reveal the 
simple form with the small minimal period equal 
to several energy units, but also they can expose 
much more complicated pattern of bands with                     
the minimal period of several tens of energy     
units. Each set of values of parameters provides 
the original specter with its own minimal                    
period and substructure. In the minimal period of 
each specter, there is a point with respect to 

which the specter is symmetric and besides each 
specter exhibits a symmetric substructure (e.g. 
Fig. 1). 
    
Let us now consider some concrete energy 
spectra of the graphene Fibonacci SL modulated 
by the velocity barriers. Fig. 2 shows the trace 
map for the initial Fibonacci generations of the 
SL in which the quasi-periodic modulation is 
created due to different values of the velocity 
barriers, namely � a=1, � b=2, d=1, w=0.5, the 
energy range is selected to be the minimal period 
equal to 2π. The trace map investigated is 
characterized by the following features. For the 
taken set of parameters which corresponds to 
the trace map in Fig. 2 each Fibonacci 
generation forms spectra with a regular 
arrangement of the energy bands, and each of 
them exposes its own geometry. The higher 
generation is, the spectra of more complex 
pattern correspond to it. Note that spectra                         
of higher generations are strongly fragmented 
(therefore we don't represent them), and       
besides fragmentation degree increases 
significantly with increase in geometrical SL 
parameters d, w. 
 
With increasing the number of the Fibonacci 
sequence the number of gaps increases and 
their total width becomes larger. The 
fragmentation of the allowed bands in all 
generations starting from the third one occurs in 
accordance with the property of the self-similarity. 
Note also that, for some energy ranges, there are 
gaps in every Fibonacci sequence.  
 
It should be noted further that in certain fixed 
energy areas, the Fibonacci inflation rule is 
satisfied: zn=zn-1+zn-2, where zn is number of 
bands in the n-th Fibonacci generation. The 
minimal such energy range is shown in Fig. 2. 
The numbers of the allowed bands in the 
consequent Fibonacci generations for the 
parameters chosen are 5, 8, 13, 21 for the 2-d, 3-
d, 4-th and 5-th sequences respectively. 
 
The main conclusion from the spectra presented 
is as follows: Fibonacci quasi-periodic 
modulation in graphene superlattices with the 
velocity barriers can be effectively realized by 
virtue of a difference in �a and �b values, i.e. in 
value of the velocity barriers (no additional factor 
is needed). And this fact is true for a case of 
normal incidence of quasi-electrons on a lattice. 
(Therefore, the statement of authors of [13] that 
in graphene-based SL (in contrast to other SL), 
the quasi-periodic modulation can be “manifested 
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only at oblique incidence” of the Weyl-Dirac 
electrons on a lattice isn't correct. As the results 
of this work demonstrate (and also the results of 
the previous works [12,14,15]) the 
implementation of the quasi-periodic modulation 
depends on a quasi-periodicity factor, and we 
see that if this factor is realized either due to 
different  magnitude of the velocity barriers (as in 
this work), or by virtue of different values of gaps 
(as in [14,15]), the quasi-periodic modulation 
takes place not only at inclined incidence of 
quasi-particles on a lattice  but also at their 
normal incidence).  
 

 
 

Fig. 2. Trace map for the initial Fibonacci 
generations, values of the parameters are as 

follows: d=1, w=0.5, �a=1, �b=2 
 
We have shown above that the Fibonacci quasi-
periodic modulation in the graphene SL can be 
created due to different Fermi velocity values in 
the SL barriers. There is another way to form an 
effective quasi-periodic modulation in the SL 
under consideration and it is due to different 
values of the electrostatic barriers in different 
elements of the array while maintaining the 
velocity the same along the lattice chain. The 
external electrostatic potential U has a significant 
impact on the electron transmission and it is 
convenient to tune the transmission spectra with 
the help of this potential. Let us first consider 
briefly the effect of the external potential U on the 
strictly periodic SL with the velocity barriers. 
Denote the potential in elements a and b as Ua 
and Ub respectively; Ua=Ub for the strictly 
periodic SL. The potential barriers are 
considered to be the piece wise constant, they 
are located along the SL chain (0x axis). The 
changes in the transmission spectra caused by 
the electrostatic potential are illustrated in Fig. 3 
and are as follows: 1) a new (additional) gap 
appears between the two adjacent gaps which 
exist in the case of U=0; 2) a shift of all gaps is 
observed and it depends on the value of U;                     
3) the gap width depends on U also. 

These changes are governed by the important 
property of the spectra – they are periodic with 
the potential U. For example, for the parameters 
of Fig. 3, spectra return to their initial state at 
intervals VS=2πn, n – integer, i.e. the additional 
gap due to the external potential U doesn’t 
appear. This means that for certain values of U 
the electrostatic barriers are perfectly transparent 
for the Dirac-Weyl quasi-electrons and thus there 
is a kind of the Klein paradox manifestation in the 
SL under consideration. (If � a=  � b=1 we have 
T(E)=1 for all energies and values of U due to 
the Klein tunneling).The widening of gaps is 
accompanied by the narrowing of those gaps 
which relate to the SL with the velocity barriers 
for U=0.  
 

 
 

(a) 

 
(b) 

 
 

(c) 
 

Fig. 3. Transmission spectra for the various 
values of the electrostatic potential U: U=0, 
U=2, U=4.5 for Fig. 3, a,b,c respectively, the 

other parameters: �a=�b=2, d=1, w=0.5 
 
The magnitude of the period oscillations VS can 
be found from the following considerations. 
According to the Bloch theorem we can write   
 cos�W�X + Y�� = 1 2⁄ Tr�=R=]�,          (8) 

 
d+w is the lattice period. Calculation of the right 
side of this equation for the case of normal 
incidence of electrons yields the expression 
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cos�W�X + Y�� = cos��� − S�X/� ± �Y�,    (9) 
 �=�a=�b. 

 
The last formula yields a value for the period of 
oscillations in the transmission spectra  
 VS = ^_�/X.           (10) 

 
This expression determines the dependence of 
the period VS on the SL geometric parameters (it 
is inversely proportional to the barrier width and 
holds for each value of the quantum well width) 
and on the Fermi velocity. Note that formula (10) 
holds well even for a small number of the SL 
periods. 

 

 
 

Fig. 4. Trace map for the initial Fibonacci 
generations of the SL with the parameters: 

Ua=0, Ub=ππππ, �a= �b=2, d=1, w=0.5 
 
Fig. 4 shows a trace map for the SL under 
consideration for the difference ∆U=Ua-Ub=π, 
other parameters as in Fig. 3, the energy interval 
is chosen to be equal to the minimal period in Fig. 
3.1. In general, its character is similar to that 
plotted in Fig. 2 but some of its features must be 
noted here. This trace map is regular and gaps 
are wider than for other values of ∆U even if they 
are larger than π that is if the quasi-periodic 
factor is stronger. This is due to the fact that the 
spectra for the Fibonacci SL considered preserve 
the property of the periodicity in the case of 
Ua≠Ub and the factor of the quasi-periodicity is 
the secondary to the main property of periodicity.  
For values of ∆U=2πn the quasi-periodicity 
doesn’t manifest itself at all and spectra repeat 
the initial state i.e. the one for U=0. The greatest 
splitting of the allowed bands is observed for 
values of ∆U slightly higher than πn. The trace 
map is not regular and symmetric for the arbitrary 

parameter values (for the general case when 
U≠πn).  
 
We see that the trace map in Fig. 4 is                     
divided into two parts by the gap for energy            
equal to a little more than 8 (for ∆U chosen).                  
The number of bands is subjected to the 
Fibonacci inflation rule in every part: for the    
initial Fibonacci generations we have the 
sequence of numbers 3, 4, 7, 11… and 1, 2, 3, 
5… in the left and right parts respectively, and 
totally 4, 6, 10, 16… which differs from the case 
of Fig. 2. 
 
Pay particular attention to the broad (lower 
energy) bands in each Fibonacci generation in 
Fig. 4. They correspond to the so called 
additional or superlattice Dirac bands in a 
periodic lattice [19,20]. It plays an important role 
in the controlling of the SL energy spectra since it 
is robust against the structural disorder. The 
location of the middle of such a band (mid-gap) 
ED is determined by the condition [19,20]. 
 9�X + 9RY = 0          (11) 

  
which yields  
 

ED=Ud/(d + υ w)          (12) 
 

This equation for the position of the Dirac 
superlattice gap is well satisfied for a wide range 
of the parameters involved even for a small 
number of the SL periods. The Dirac band width 
depends on the problem parameters and may be 
less than the width of the other (Bragg) bands 
(see e.g. [14,15,21]).  
 
Similar Dirac superlattice gaps exist also in                   
the case of the quasi-periodic Fibonacci                         
SL investigated. The mid-gap position of                   
such a gap may be approximately found by the 
equation (13) (for not a large difference between 
Ua and Ub). Note further that a characteristic 
feature of the SL Dirac band is that it doesn’t 
depend on the lattice period d+w, but it is 
sensitive to the ratio w/d. This is illustrated in Fig. 
5 where log T(E) is plotted for the fourth 
Fibonacci generation with the parameters: �=2, 
Ua=4, Ub=3.5, the dashed line in Fig. 5a 
corresponds to values d=0.8, w=0.6, for the                   
solid line d=0.96, w=0.72; for the solid line in                    
Fig. 5b  d=0.6, w=0.8, for the dashed line d=0.8, 
w=0.6. 
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(a) 
 

 
 

(b) 
 

Fig. 5. Dependence of log (T) on energy E for the fourth Fibonacci generation, values of the 
parameters: �=2, Ua=4, Ub=3.5, the solid line in Fig. 5a corresponds to values d=0.96, w=0.72, 
for the dashed line d=0.8, w=0.6, for the solid line in Fig. 5b d=0.6, w=0.8, for the dashed line 

d=0.8, w=0.6 
 
4. CONCLUSION 
 
We analyze the energy spectra of the Fibonacci 
superlattice based on graphene modulated by 
the Fermi velocity barriers. The quasi-periodic 
modulation can be realized due to different 
values of the velocity barriers or due to different 
values of the external potential in the SL 
elements a and b. Contrary to the case of other 
types of the graphene SL spectra studied reveal 
the periodic character over all the energy scale 
and the transmission coefficient doesn’t tend 
asymptotically to unity at rather large energies. 
The periodic dependence of the considered 
spectra on the magnitude of the external 
electrostatic potential is observed. Spectra 
demonstrate the rich variety of configurations 

(patterns) of the allowed and forbidden bands 
location dependent on one hand on the Fermi 
velocity magnitude and on the other hand on the 
SL geometry; for some special parameter values, 
they expose the regular character, symmetrical 
with respect to a certain point. The SL Dirac gaps 
are present in the spectra and their location 
depends on the velocity barriers value, on the 
value of the external potential as well as on the 
SL geometrical parameters. The results of our 
work can be applied for controlling the energy 
spectra of the graphene-based devices. 
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