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Abstract . A simple new method for constructing solutions of multidimensional nonlinear wave 
equations is proposed. 

1. Introduction 

The method of symmetry reduction of an equation to equations with fewer variables, in 
particular, to ordinary differential equations [1-3] is among the most efficient methods for 
constructing solutions of nonlinear equations in mathematical physics. This method is based 
on investigation of the subgroup structure of an invariance group of a given differential 
equation. Solutions being obtained in this way are invariant with respect to a subgroup of 
the invariance group of the equation. It is worth noting that the invariance imposes very 
severe constraints on solutions. For this reason, the symmetry reduction does not allow one 
to obtain a sufficiently wide classes of solutions in many cases. 

The idea of the conditional invariance of differential equations, proposed in [3-6], is 
particularly interesting. By conditional symmetry of an equation, one means the symmetry 
of some solution set. For a lot of the important nonlinear equations of mathematical physics, 
there exist solution subsets, the symmetry of which is essentially different from that of the 
whole solution set. One chooses such solution subsets, as a rule, with the help of additional 
conditions representing partial differential equations. The description of these additional 
conditions in the explicit form is a difficult problem and unfortunately there are no efficient 
methods to solve it. 

In this paper, we propose a simple method for constructing some classes of exact 
solutions to the nonlinear equations of mathematical physics. We notice that the idea of 
this method was formulated by Fushchych and Barannyk [7]. The essence of the method 
is the following. Let we have a partial differential equation 

F(x, U, U, U, . . . , u) = 0 (1) 
1 2 m 

where u = u(x), x = (XQ, X\ , . . . , xn) € Ri . n j u is a collection of all possible derivatives of 
m 

order ra, and let equation (1) have a nontrivial symmetry algebra. To construct solutions of 
equation (1), we use the symmetry (or conditional symmetry) ansatz [3]. Suppose that it is 
of the form 

w = fM(p(cou • • • ,«>k) + g(x) (2) 
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where CO\ = O)\ (X0j JCi, . . . , xn), • • •, (*>K = O>K(XO> x \ , . . . 9 X N ) are new independent variables. 
Ansatz (2) singles out some subset S from the whole solution set of equation (1). Construct 
(if it is possible) a new ansatz 

" = f(x)<p(Q>\9...9a>k,a>k+\,'..f<*>i)+g(x) (3) 

which is a generalization of ansatz (2). Here cok+\,... ,coi are new variables that should 
be determined. We choose the variables <y*+i,... ,a)i from the condition that the reduced 
equation corresponding to ansatz (3) coincides with the reduced equation corresponding 
to ansatz (2). Ansatz (3) singles out a subset Si of solutions to equation (1), being an 
extension of the subset S. If solutions of the subset S are known, then one can also 
construct solutions of the subset Si. These solutions are constructed in the following way. 
Let u = u(x, C j , . . . , Ct) be a multiparameter solution set of the form (2) of equation (1), 
where C\, ..., Ct are arbitrary constants. We shall obtain a more general solution set of 
equation (1) if we take constants C, in the solution u = u(xy C\,..., Ct) to be arbitrary 
smooth functions of 1, . . . , coi. 

Basic aspects of our approach are presented by the examples of d'Alembert, Liouville 
and eikonal equations. 

2. Nonlinear d'Alembert equations 

Let us consider a nonlinear Poincare-invariant d'Alembert equation 

Uu + F(u) = 0 (4) 

where 

•M _ a2" a2" 
u ~^xl~"dx\ a3c| 

and F(u) is an arbitrary smooth function. References [3, 8-10] are devoted to the 
construction of exact solutions to equation (4) for different restrictions on the function F(x). 
The majority of these solutions is invariant with respect to a subgroup of the invariance group 
of equation (4), i.e. they are Lie solutions. One of the methods for constructing solutions 
is the method of symmetry reduction of equation (4) to ordinary differential equations. The 
essence of this method for equation (4) consists in the following. 

Equation (4) is invariant under the Poincare algebra A P ( \ , n ) with the basis elements 

Joa = X0DA + xa d o Jab = XBDA — XADFY 

Po = d0 Pa=da (ayb = \9 2, . . . , * ) . 

Let L be an arbitrary rank n subalgebra of the algebra AP(1, n). The subalgebra L has 
two main invariants w, co = co(xo, x\,..., xn). The ansatz u = cp{co) corresponding to the 
subalgebra L reduces equation (4) to the ordinary differential equation 

<p(Vco)2 + cpUci) + F(<p) = 0 (5) 

where 

\dx0) \dxij \dxn J 
Such a reduction is called the symmetry reduction, and the ansatz is called the symmetry 
ansatz. There exist eight types of nonequivalent rank n subalgebras of the algebra AP(1, n) 
[8]. In table 1, we write out these subalgebras, their invariants and values of (V^)2 , Deo 
for each invariant. 
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Table 1. 

N Algebra Invariant œ (Vw)2 Geo 

1 Plt...tPH' M) 1 0 
2 P{), Pi Pn-1 - 1 0 
3 P U - . . , P n - u h n ( 4 ~ x l f 1 

4 JAH {a,b=\,...,k), + + l ) l / 2 -1 

Pk+1 № ^ 2) 
5 = /( ) a - Jak, Jab (*« _ xl Xk) 1 

(a, 6 = 1 it - 1) 
flk+i ^ <*>D 

6 Pi Pa-2. +fl». a Jn(*o-*„) + *«-! - 1 0 
Ah +aPn-\ 

1 Po+Pn,P\ Pn-1 •*() - 0 0 
8 Pa (a — 1, 2), 

G„_i + />0-P„, Po+P* (*o — x„)2 — 4xn-i - 1 0 

ÛJ 
A: - 1 

a» 

A: 

The method proposed in [12] of reduction of equation (4) to ODEs is a generalization 
of the symmetry reduction method. Equation (4) is reduced to ODEs with the help of the 
ansatz u = <p(co), where co = co(x) is a new variable, if co(x) satisfies the equations 

U(O = F\ (co) (Vco)2 = F2(CO). (6) 

Here F\, F2 are arbitrary smooth functions depending only on co. 
Thus, if we construct all solutions to system (6), we get the set of all values of the 

variable co, for which the ansatz u = (p(co) reduces equation (4) to ODEs in the variable co. 
References [11, 12] are devoted to the investigation of system (6). 

Note, however, that ansatze obtained by solving system (6), do not exhaust the set of 
all ansatze reducing equation (4) to ordinary differential equations. For this purpose, let us 
consider the process of finding generalized ansatze (3) on the known symmetry ansatze (2) 
of equation (4). 

(i) Consider the symmetry ansatz u = (p(co\) for equation (4), where co\ = (xq — x2 — 
• • • — k ^ 2. The ansatz reduces equation (4) to the equation 

k 
<Pn + — <P\ + F(<o\) = 0 (7) 

(»1 

where (p\\ = d2cp/darf, (p\ = d<p/d<o\. This ansatz should be regarded as a partial case 
of the more general ansatz u = (p(co\yco2), where co2 is an unknown variable. The ansatz 
u = cp(cO], C02) reduces equation (4) to the equation 

k 
<Pu -I <P\ + 2(pn(^coi • Vco2) + (P2OCO2 + <P22CVCO2)2 + F(<p) = 0 (8) 

CO] 

where 

^ ^ dco\ do)2 dco\ da>2 dco\ dco2 
1 2 dxo 3XQ dx\ dx\ dxn dxn 

^et us impose the condition on equation (8), under which equation (8) coincides with 
the reduced equation (7). Under such an assumption, equation (8) decomposes into two 
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equations 

<P\\ + —<P\+F(SP)=Q (9) CO I 

2<p12(V<w1 • Vco2) + <p22(Vo>2)2 + (PnUa)2 = 0. (10) 

Equation (10) will be fulfilled for an arbitrary function <p if we impose the conditions 

•<W2 = 0, ( V ^ 2 ) 2 = 0 (11) 

Vcoi • Vo>2 = 0 (12) 

on the variable co2. Therefore, if we choose the variable o>2 such that conditions (11) and (12) 
are satisfied, then the multidimensional equation (4) is reduced to the ordinary differential 
equation (7) and solutions of the latter equation give us solutions of equation (4). So, the 
problem of reduction is reduced to the construction of general or partial solutions to the 
system (11) and (12). 

The overdetermined system (11) is studied in detail in [13, 14], where a wide class of 
solutions to system (11) is constructed. These solutions are constructed in the following 
way. Let us consider a linear algebraic equation in variables XQ, X\,..., xn with coefficients 
depending on the unknown co2: 

a0(co2)x0 - a\ (co2)x 1 an(co2)xn - b(a>2) = 0. (13) 

Let the coefficients of this equation represent analytic functions of co2 satisfying the condition 

[ я о ( * > 2 ) ] 2 - [ai(co2)]2 [an(co2)f = 0 . 

Suppose that equation (13) is solvable for co2 and let a solution of this equation represent 
some real or complex function 

X\, ,.., xn ). (14) 

Then function (14) is a solution to system (11). Single out those solutions (14), that possess 
the additional property Va>\ • V&>2 = 0. It is obvious that 

dco2 ao дсо2 a\ dco2 an 

Э*о S'' 3*1 8'' ' dxn 8' 

where 

8(o)2) = «0(^2)^0 - а\(а)г)х\ an(co2)xn - b(co2) 

and 8' is the derivative of 8 with respect to co2. Since 

dcoi 3<W] da>\ xn 

дхо o) 1' dx\ co\' ' dxn a)\ 

we have 

Vco{ • Vct>2 = — 7 ( ^ 0 ~ a\X\ anxn). 
o)\8 

Hence, with regard for (13), the equality Vco\ • Vco2 = 0 is fulfilled if and only if b(co2) = 0. 
Therefore, we have constructed the wide class of ansatze reducing the d'Alembert equation 
to ordinary differential equations. The arbitrariness in choosing the function co2 may be 
used to satisfy some additional conditions (initial, boundary and so on). 
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(ii) The symmetry ansatz u = (p(coi), co\ = (*? + ••• + */2)1/2> 1 < / < fl — 1, is 
generalized in the following way. Let a)2 be an arbitrary solution to the system of equations 

d2oj d2a) _ __ d\o _ Q 

Txk " 3xl} ~ o i+i (15) 

( - ) -\dxoJ 
( J 2 - X =0. 
\ d x M ) \dxn) 

The ansatz u = (p(coi, ^2) reduces equation (4) to the equation 

d 2(p k — 1 d(p 
- 7 1 J L + F(<P) = 0. dwf da>i 

If I = n — 1, then the ansatz w = , 0)2), <̂ 2 = — *n is a generalization of the symmetry 
ansatz w = 

Ansätze corresponding to subalgebras 2, 6 and 8 in table 1, are particular cases of the 
ansatz constructed above. In a similar way, one can obtain wide classes of ansätze reducing 
equation (4) to two-, three-dimensional and so on equations. Let us present some of them. 

(iii) The ansatz u = (p(co\,..., coi, o>/+i), where a>\ = x\f..., 0)1 = X[, coi+\ is an 
arbitrary solution of system (15), / < n — 1, is a generalization of the symmetry ansatz 
u = cp(co\,..., a>i) and reduces equation (4) to the equation 

d2w d2(p d2(p 
% ^ + F(<p) - 0. 

d coj 0C02 dcof 

(iv) The ansatz u = (p(a>\,..., cos> <wÄ+i), where co 1 = (Xq — xf — • • • — xf)1*2, 
co 2 = xi+i,... ,cos = JC/+5-1, / ^ 2, Z + j — 1 ^ n, a).y+i is an arbitrary solution of the 
system 

•Ö) j + i = 0 (VÖ),+I)2 = 0 VÖ;,- • = 0 i = 1 ,2 J (16) 

is a generalization of the symmetry ansatz u = <p(ct>i,..., cos) and reduces equation (4) to 
the equation 

I 
<P 11 <Pi - <P22 <pss + F(<p) = 0. co 1 

Let us construct in the way described above some classes of exact solutions of the 
equation 

+ = 0 (17) 

The following solution of equation (17) is obtained in [10]: 

ul~k = a(k, l)(x2 + ...+x?) (18) 

where 

Hl-k)2 

Solution (18) defines a multiparameter solution set 

u]~k = a(k, /)[(*, + C,) 2 + • • • + (xi + C/)2] 

where C i , . . . , C[ are arbitrary constants. Hence, according to (iii), we obtain the following 
set of solutions to equation (17) for / < n — 1: 

Ul~k = cr(k, /)[(*! + h\(co))2 + • . . + (xt + A/(ö>))2] k £ 1 

1 - 2 
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where co is an arbitrary solution of system (15) and h\(co), ..., hi(co) are arbitrary twice 
differentiable functions of co. In particular, if n = 3 and 1 = 1, then equation (17) possesses 
in the space Ri.3 the solution set 

= ^ T ^ + M o O ] 2 k*-1. 2(1 -f- A:) 
Next, let us consider the following solution of equation (4) [10]: 

u]'k = a(k,s)(x2 -x2 x2) s = 2,...,n (19) 

where 

, Ml - k? s+1 
a(k, s) = k . 

2(s -ks + k+ 1) s — 1 
Solution (19) defines the multiparameter solution set 

l~k - o(k, s)[xo2 - x 2 xf - (JC,+, + C / + 1 ) 2 (x, + C,) 2 ] 

where C / + i , . . . , C v are arbitrary constants. According to (iv) we obtain the following 
solution set for / ^ 2: 

ux~k = a{k, s)[x% - x2 x2 - (xM + hM(co))2 (xs + hs{co))2] 

where co is an arbitrary solution of system (16), and /z/+i(&>),..., hs{co) are arbitrary twice 
differentiable functions. In particular, if I — 2 and s = 3, then equation (4) possesses in the 
space Mi? the following solution set: 

« '"* = 4 ( 1 1 2)" K 2 " ~ 4 ~ (*3 - M » ) ) 2 ] A * 2. 

The equation 

• m + 6w2 = 0 (20) 

possesses the solution u = V(x?, + C2), where V(x3 -f C2) is an elliptic Weierstrass function 
with the invariants #2 = 0 and #3 = Cj . Therefore, according to (iii) we get the following 
set of solutions of equation (20): 

u = V(xi + h(co)) 

where co is an arbitrary solution to system (15) and h(co) is an arbitrary twice differentiable 
function of co. 

Next consider the Liouville equation 

• w + A expw = 0. (21) 

The symmetry ansatz u = cp(co\), a>\ = X3, reduces equation (21) to the equation 

d 2cp 
= Aexp<p(a>i). 

dw]* 

Integrating this equation, we obtain that cp coincides with one of the following functions: 

\( c i -In < sec' 

In 

J sec2 + C2) ) J (Ci < 0, À > 0, C2 € 

2Cj C2 exp (\/CÎ"(Wi ) 

exp (%/c7&>i)]' 

In ( / f o , + c) . 

(Ci > 0, XC2 > 0) 
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Hence, according to (iii) we get the following solution set for equation (21): 

)! 

4905 

u = In 

u = In 

h\(co) 2 sec 
2k 

sJ-h\{co) 
(cox + h2(co)) 

2h\(co)h2(co) exp (*Jh\(co)co\) 

à[1 — h2(co) exp {y/h\(ù))(jL>\)\ 

u = — In ( J U + h(co) ] 

(hx(co) < 0, k > 0) 

(hx(co) > 0, kh2((o) > 0) 

where h\(co), h2(co), h(co) are arbitrary twice differentiable functions; co is an arbitrary 
solution to system (15). 

Using, for example, the solution to the Liouville equation (21) [10] 

2(s - 2) 
u = In 

x[xl -
s+ 2 

we obtain the wide class of solutions to the Liouville equation 

2 (s - 2) 
u = In 

k[x2
0 - xf - (X/+1 + hi+i(co))2 (xx + hs(co))2] l 

where co is an arbitrary solution to system (16), and h{+i(a>),..., hs(co) are arbitrary twice 
differentiable functions. If s = 3, then equation (21) possesses in the space Mj 3 the 
following solution set: 

2 
u = In 2 Jcf — jc| — (x3 + h3(a>))2]' 

Let us consider now the sine-Gordon equation 

•w + sin u = 0. 

In an analogous way, we get the following solutions: 

u = 4 arctan h} (co) efi0*3 - \ (1 - e)jt 2v* w So = £ = ±\ 
u = 2arccos[dn(x3 -f h\(co))y m] + + (1 + S)TX 0 < m < 1 

u = 2 arccos cn m + kl +é)n 0 < m < 1 

where h\(co) is an arbitrary twice differentiable function, co is an arbitrary solution to system 
(15). 

3. Eikonal equation 

Consider the eikonal equation 

/ du \ 2 _ / du \2 _ / du \ 2 _ fdu_\2 _ 
(22) 

The symmetry ansatz u = cp(co\), co\ = XQ — x\ — x\ — jcf, reduces equation (22) to the 
equation 

2 

(23) 
dcp 

4Û>, ( I — 1 = 0 . 
aco\ 
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We shall look for a generalized ansatz in the form u = (p(co\,co2). This ansatz reduces 
equation (22) to the equation 

4a)i ( J ^ j + 2(Vo>, • V u 2 + ( V û ; 2 ) 2 ( ^ ) = L ( 2 4 ) 

Impose the condition on equation (24), under which equation (24) coincides with 
equation (23). It is obvious that this condition will be fulfilled if we impose the conditions 

(Va>2)2 = 0 Va)] • Voj2 = 0 (25) 

on the variable CD2. Having solved system (25), we get the explicit form of the variable o)2. 
It is easy to see that an arbitrary function of a solution to system (25) is also a solution to 
this system. 

Having integrated equation (23), we obtain (u + C)2 = x£ — x2 — x\ — Jt2, where C is 
an arbitrary constant. We shall obtain a more general solution set for the eikonal equation 
if we take C to be an arbitrary solution to system (25). 

The symmetry ansatz u = (p(coi, co2), co\ = — xf — co2 ~ x3 can be generalized 
in the following way. Let OJ3 be an arbitrary solution to the system of equations 

2 " 
(dc°i\ ( 
\dx0J \ d x i j (26) 

dco 3 дсо3 дсо з 
• ^ o — + — + = 0. 

OXQ OXj ox2 

Then the ansatz и = (p(co\y со2, co3) reduces the eikonal equation to the equation 

Ч Ш & ) 1 — 
Equation (27) possesses the solution [10] 

* = - x f ~ 4 ) 1 / 2 + ^ T * 3 + ° 2 

(<P + C 2 ) 2 = x2 - x 2 - x\ - (*3 + C1)2 

that can be easily found by using the symmetry reduction method of equation (27) to an 
ordinary differential equation. Having replaced arbitrary constants C\ and C2 by arbitrary 
functions h\(co) and h2(co), we get the more wide classes of exact solutions to the eikonal 
equation: 

2/z j (с^з) 2 к г Ш 

(и + h2(co3))2 = x2 - xf - x\ - (x3 + h\(a)3))2. 

Let us note, since the Born-Infeld equation is a differential consequence of the eikonal 
equation [3], we also constructed wide classes of exact solutions of the Born-Infeld equation. 
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