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Abstract. A simple new method for constructing solutions of multidimensional nonlinear wave
equations is proposed.

1. Introduction

The method of symmetry reduction of an equation to equations with fewer variables, in
particular, to ordinary differential equations [1-3] is among the most efficient methods for
constructing solutions of nonlinear equations in mathematical physics. This method is based
on investigation of the subgroup structure of an invariance group of a given differential
equation. Solutions being obtained in this way are invariant with respect to a subgroup of
the invariance group of the equation. It is worth noting that the invariance imposes very
severe constraints on solutions. For this reason, the symmetry reduction does not allow one
to obtain a sufficiently wide classes of solutions in many cases.

The idea of the conditional invariance of differential equations, proposed in [3-6], is
particularly interesting. By conditional symmetry of an equation, one means the symmetry
of some solution set. For a lot of the important nonlinear equations of mathematical physics,
there exist solution subsets, the symmetry of which is essentially different from that of the
whole solution set. One chooses such solution subsets, as a rule, with the help of additional
conditions representing partial differential equations. The description of these additional
conditions in the explicit form is a difficult problem and unfortunately there are no efficient
methods to solve it.

In this paper, we propose a simple method for constructing some classes of exact
solutions to the nonlinear equations of mathematical physics. We notice that the idea of
this method was formulated by Fushchych and Barannyk [7]. The essence of the method
is the following. Let we have a partial differential equation

F(x,u,u,u,...,u):O (1)
12

n
where u = u(x), x = (xg, xy, ..., x,) € Ry ,, u is a collection of all possible derivatives of

m
order m, and let equation (1) have a nontrivial symmetry algebra. To construct solutions of
equation (1), we use the symmetry (or conditional symmetry) ansatz [3]. Suppose that it is
of the form

u=fx)p,...,wo)+ gkx) (2)
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where w; = w(xg, X1, ..., Xn), ..., wx = wr(xo, X1, ..., X,) are new independent variables.
Ansatz (2) singles out some subset S from the whole solution set of equation (1). Construct
(if it is possible) a new ansatz

u=fx)e,..., o g1, -.., o)+ g(x) (3)
which is a generalization of ansatz (2). Here w4, ..., w; are new variables that should
be determined. We choose the variables wy.y, ..., @ from the condition that the reduced

equation corresponding to ansatz (3) coincides with the reduced equation corresponding
to ansatz (2). Ansatz (3) singles out a subset S; of solutions to equation (1), being an
extension of the subset S. If solutions of the subset S are known, then one can also
construct solutions of the subset S;. These solutions are constructed in the following way.
Let u = u(x, Cy, ..., C;) be a multiparameter solution set of the form (2) of equation (1),
where Cy, ..., C, are arbitrary constants. We shall obtain a more general solution set of
equation (1) if we take constants C; in the solution u = u(x, Cy, ..., C;) to be arbitrary
smooth functions of wiy, ..., w;.

Basic aspects of our approach are presented by the examples of d’Alembert, Liouville
and eikonal equations.

2. Nonlinear d’Alembert equations

Let us consider a nonlinear Poincaré-invariant d’ Alembert equation

Ou+ Fu)=0 4)
where
32 82 82
T S
dxy  0x; ox};

and F(u) is an arbitrary smooth function. References [3, 8-10] are devoted to the
construction of exact solutions to equation (4) for different restrictions on the function F(x).
The majority of these solutions is invariant with respect to a subgroup of the invariance group
of equation (4), i.e. they are Lie solutions. One of the methods for constructing solutions
is the method of symmetry reduction of equation (4) to ordinary differential equations. The
essence of this method for equation (4) consists in the following.

Equation (4) is invariant under the Poincaré algebra AP (1, n) with the basis elements

Joa = X0, + x400 Jub = Xp0q — X4
Py = d P, =9, (a,b=1,2,...,n).
Let L be an arbitrary rank n subalgebra of the algebra AP(1, n). The subalgebra L has

two main invariants u, w = w(xg, X1, ..., X,). The ansatz u = ¢(w) corresponding to the
subalgebra L reduces equation (4) to the ordinary differential equation

$(Vo)’ +¢0w + F(p) =0 ©)
where

o= (52 -(5) - (2
aX() axl ax,,

Such a reduction is called the symmetry reduction, and the ansatz is called the symmetry
ansatz. There exist eight types of nonequivalent rank n subalgebras of the algebra AP(1, n)
[8]. In table 1, we write out these subalgebras, their invariants and values of (Vw)?, Ow
for each invariant.
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Table 1.
N Algebra Invariant @ (Vw)? Ow
1 Pis o5 Py X() 1 0
2 /T o P,y Xp —1 0
2 I
3 Pl ----- Pn—lv-,()n (X(Z,-X,%) 1 ;
k—1
4 jal) (a,b: 1, ..., k), (X|2++X‘2)I/2 1 -—T
Peyy,y.n, Py, Py (k2>2) .
1/2
5  Gu=Joa—Juk» Jub (3-x2-...—x3)"* 1 ~
(a. b= Lizsos k—1)
Joks Pegrs.os P, k=21
6 P...., Py 2, Py+ Py, aln(xp — xp) + Xp—1 -1 0
Jon +a Py
i Py+ Py, Py, ..., Pp_) X0 — Xn 0 0
8 Pu (a — l ,,,,, n —2),
Gpy+Po— Py, Po+ Py (x0 — Xn)? — 4xp_ -1 0

The method proposed in [12] of reduction of equation (4) to ODEs is a generalization
of the symmetry reduction method. Equation (4) is reduced to ODEs with the help of the
ansatz u = ¢(w), where w = w(x) is a new variable, if w(x) satisfies the equations

Ow = Fi(w) (Vo)? = F(w). (6)

Here F,, F, are arbitrary smooth functions depending only on w.

Thus, if we construct all solutions to system (6), we get the set of all values of the
variable w, for which the ansatz u = ¢(w) reduces equation (4) to ODEs in the variable w.
References [11, 12] are devoted to the investigation of system (6).

Note, however, that ansitze obtained by solving system (6), do not exhaust the set of
all ansatze reducing equation (4) to ordinary differential equations. For this purpose, let us
consider the process of finding generalized ansitze (3) on the known symmetry ansitze (2)
of equation (4).

(1) Consider the symmetry ansatz u = ¢(w,;) for equation (4), where w; = (xg — x,2 —

S = x,%), k > 2. The ansatz reduces equation (4) to the equation

k
<P11+w—<P1+F(w1)=0 (N
I

where @11 = d*¢/dw?, ¢ = dp/dw;. This ansatz should be regarded as a partial case
of the more general ansatz u = ¢(w;, w;), where w; is an unknown variable. The ansatz
u = ¢(w, wy) reduces equation (4) to the equation

k
en + .y + 2¢012(Va, - Van) + 90w, + ¢22(Vwy)* + F(p) =0 (8)
1
where
d d 0 )
Voo Vo, = 201 d02 _don B B dwp
dxg dxg Ox; Ox ax, 0xy

Let us impose the condition on equation (8), under which equation (8) coincides with
the reduced equation (7). Under such an assumption, equation (8) decomposes into two
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equations

k
en+—or+Flp)=0 9)
. w)
2012(V - Var) + ¢22(Vwr)* + g120w; = 0. (10)
Equation (10) will be fulfilled for an arbitrary function ¢ if we impose the conditions

Ow, =0, (Van)? =0 (11)
Va)l 8 sz =0 (12)

on the variable w,. Therefore, if we choose the variable w, such that conditions (11) and (12)
are satisfied, then the multidimensional equation (4) is reduced to the ordinary differential
equation (7) and solutions of the latter equation give us solutions of equation (4). So, the
problem of reduction is reduced to the construction of general or partial solutions to the
system (11) and (12).

The overdetermined system (11) is studied in detail in [13, 14], where a wide class of
solutions to system (11) is constructed. These solutions are constructed in the following
way. Let us consider a linear algebraic equation in variables xg, xi, .. ., x, with coefficients
depending on the unknown w;:

aog(wa)xo — ay(w)x) — -+ - — an(w2)Xy — b(wz) = 0. (13)
Let the coefficients of this equation represent analytic functions of w, satisfying the condition
[a0(@2))® = [a1 (@)’ = - - = [an(@2)]* = 0.

Suppose that equation (13) is solvable for w; and let a solution of this equation represent
some real or complex function

wZ(XO,xlvu--xn)~ (14)

Then function (14) is a solution to system (11). Single out those solutions (14), that possess
the additional property Vw, - Vw, = 0. It is obvious that

30)2 _ agp 3&)2 _ a) dwy _ an
axo & axy & T ox, &
where
d(w7) = ap(wr)xo — ar(wy)x; — - -+ — ap(wy)x, — b(wsy)

and &’ is the derivative of § with respect to w,. Since

dwy X0 dw X dwy X
e Mmoo Wt T om o
we have
1
Vw, -V, = —a—g(aoxo —ayXy — = AuXp).

Hence, with regard for (13), the equality Vw, - Vw, = 0 is fulfilled if and only if b(w;) = 0.
Therefore, we have constructed the wide class of ansitze reducing the d’Alembert equation
to ordinary differential equations. The arbitrariness in choosing the function w, may be
uséd to satisfy some additional conditions (initial, boundary and so on).
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(ii) The symmetry ansatz u = @(w)), w; = (x} + - +x,2)1/2, 1<l <n—1,is

generalized in the following way. Let w, be an arbitrary solution to the system of equations

2w 3w Pw
gx> 05 ax2 15)

dw \? dw \° Jw 2_0
axo 8X[+1 axn o

The ansatz u = ¢(w;, w;) reduces equation (4) to the equation

If ] = n—1, then the ansatz u = ¢ (w1, w2), W3 = X9—X, is a generalization of the symmetry
ansatz u = p(w).

Ansitze corresponding to subalgebras 2, 6 and 8 in table 1, are particular cases of the
ansatz constructed above. In a similar way, one can obtain wide classes of ansitze reducing
equation (4) to two-, three-dimensional and so on equations. Let us present some of them.

(iii) The ansatz u = ¢(w,,..., wr, wiy1), where wy = xy,...,0 = Xx;, w4y Is an
arbitrary solution of system (15), / < n — 1, is a generalization of the symmetry ansatz
u = ¢(wy, ..., w) and reduces equation (4) to the equation

32 82 32
___‘t';___"; ..... _";+F(¢).—_—o,
dwy dwy dw;

(iv) The ansatz u = ¢(wi,...,ws, ws41), Where w; = (xé - xlz - xlz)l/z’
W) = Xigly---, Wy = Xp45—1, L 2 2, 1 +5 —1 < n, wg4 is an arbitrary solution of the
system
Owsy1 =0 (Vwy11)? =0 Vi - Vg =0 i=1,2,...,s (16)
is a generalization of the symmetry ansatz u = ¢(w;, ..., w;) and reduces equation (4) to
the equation

l
P11 = =1 —Pn—-—@s+ F(p) =0.
1

Let us construct in the way described above some classes of exact solutions of the
equation

Ou+rut =0 k #1. (17)
The following solution of equation (17) is obtained in [10]:
ul“k=a(k,l)(x12+--~—{—x[2) (18)
where
a1l =2
k)= ——mM8M—— [=1,2,...,n.
kD= Ty "

Solution (18) defines a multiparameter solution set
W' =gk, D[+ C* 4+ (i + C)?]
where Cy, ..., C; are arbitrary constants. Hence, according to (iii), we obtain the following

set of solutions to equation (17) for I < n — 1:

u' ™ =k, D[(xi + @)%+ + (g + hy(w))?] k # ﬁ
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where w is an arbitrary solution of system (15) and h(w), ..., h)(w) are arbitrary twice
differentiable functions of w. In particular, if n = 3 and / = 1, then equation (17) possesses
in the space R, 3 the solution set

. X1 = kY
1~k 2
et h k # —1.
2050 [x1 + hy(w)] =
Next, let us consider the following solution of equation (4) [10]:
W =0k, s)(xg—xi— - —x7) e (19)
where
A1 —k)? s+ 1
k,s)=— k .
R T e Py
Solution (19) defines the multiparameter solution set
Wt =ok o )xg —xf = —x} = G+ C)? — = (x4 Co)?]
where C4j, ..., C, are arbitrary constants. According to (iv) we obtain the following
solution set for [ > 2:
W™ = ok, x5 —xf ~ = af = G + b @) == (5 + ()]
where w is an arbitrary solution of system (16), and h;; (@), ..., hy(w) are arbitrary twice

differentiable functions. In particular, if / = 2 and s = 3, then equation (4) possesses in the
space R 3 the following solution set:

. A1 —k)? 2
bt m[xé —x{ —x3 = (3 = h3(w))?] Lt
The equation
Ou +6u’> =0 20

possesses the solution u = P(x3 + C;), where P(x3+ C;) is an elliptic Weierstrass function
with the invariants g = 0 and g3 = C;. Therefore, according to (iii) we get the following
set of solutions of equation (20):

u = P(xs + h(w))

where w is an arbitrary solution to system (15) and h(w) is an arbitrary twice differentiable
function of w.
Next consider the Liouville equation

Ou+ xexpu = 0. 21)

The symmetry ansatz u = ¢(w;), w; = x3, reduces equation (21) to the equation
2

@
5 = Aexpo(w).
dwy

Integrating this equation, we obtain that ¢ coincides with one of the following functions:

C 5| A=
1n{(—2—)isec'|: G (w1+C2)]>} (Ci <0,2>0,CeR)

2
In [ 2C,Cyexp (JCTwl)
A1 = Crexp (VTian)]

w{ffve).

} (C] >0, )\C2>0)
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Hence, according to (iii) we get the following solution set for equation (21):

u=In { (_h,(a)) sec’ l: _Zl Gl (wy + hz(a))):l)} (h(w) <0, A >0)

2A
u=1In [ 2h) (@)ha (@) exp (VA (@)w;)
A[1 = ho(@) exp (V@)1

2
u=—1In (\/—ga); +h(a)))

where h(w), h2(w), h(w) are arbitrary twice differentiable functions; w is an arbitrary
solution to system (15).
Using, for example, the solution to the Liouville equation (21) [10]

} (h(w) > 0, Ahy(w) > 0)

u=1In e sF#2
g == ]
we obtain the wide class of solutions to the Liouville equation
4= In 2(s — 2)
Mxd —xf = = xf = (s + b @) — - = (4 + hy(@))?]
where w is an arbitrary solution to system (16), and A4 (w), ..., hy(w) are arbitrary twice

differentiable functions. If s = 3, then equation (21) possesses in the space R, 3 the
following solution set:

2
AMxd —x? —x} — (x3 4+ ha()?]

Let us consider now the sine—Gordon equation

u =In

Ou + sinu = 0.
In an analogous way, we get the following solutions:
u =4arctanh(w)e —%(l—e)n g ==x1 &==I

u =2arccos[dn(x3+h1(w)),m]+%(l + &) O0<m<1

E0X3

h
u=2mccos[cn(n——+—’51£a)—)),m:l+%(l+s)n O<m<1

where & (w) is an arbitrary twice differentiable function, w is an arbitrary solution to system
(15).

3. Eikonal equation

Consider the eikonal equation

au \? au\? au \? au\? _1 5o
dxo ax, 3x, axy) 22
2 2 2

The symmetry ansatz u = ¢(w;), w; = x5 — Xx; — x5 — x_%, reduces equation (22) to the
equation

ap >
4w, (—) —1=0. (23)
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We shall look for a generalized ansatz in the form u = ¢(w;, wz). This ansatz reduces
equation (22) to the equation
3p \’ 3 3p \?
4o [ 22} + 2V, - V) - + (Va)? —‘D) =1, (24)
’ dw) dwy dan
Impose the condition on equation (24), under which equation (24) coincides with
equation (23). It is obvious that this condition will be fulfilled if we impose the conditions

(Vawy)* =0 Vw, -V, =0 (25)

on the variable w,. Having solved system (25), we get the explicit form of the variable w.
It is easy to see that an arbitrary function of a solution to system (25) is also a solution to
this system.

Having integrated equation (23), we obtain (4 + C)* = xg‘ - x12 - x% — x32, where C is
an arbitrary constant. We shall obtain a more general solution set for the eikonal equation
if we take C to be an arbitrary solution to system (25).

The symmetry ansatz u = p(w;, @), w; = xg - xlz — x%, w,; = x3 can be generalized
in the following way. Let w3 be an arbitrary solution to the system of equations

(12 - (22) - (32) -
3)(0 axl 3)(2 (26)
3(1)3 8w3 aw3

x _
0 3x0 BX| 8x2

Then the ansatz u = ¢(w, w,, w3) reduces the eikonal equation to the equation

2 2
3 3
4o, (3—"’) - (_¢) —1=0 @7
Wi 3(1)2

Equation (27) possesses the solution [10]

C2+1 1/2 c?—1
= éCl (—xt-x3)"+ ;Cl x3+C
(@+Co)? =x2 —x}—x2 — (x3+ C))?

that can be easily found by using the symmetry reduction method of equation (27) to an
ordinary differential equation. Having replaced arbitrary constants C; and C, by arbitrary
functions A (w) and A,(w), we get the more wide classes of exact solutions to the eikonal
equation:

hi(@)?+1, 5, 5 72 hi(w)? =1
= (xg—xl = x3) " ———x3+ Iy (w
2h, (w3) 55~ — ) 2h(w3) 2(@3)

(u + ha(@3))? = xg — x] — x3 — (x3 + h(w3))~

Let us note, since the Born-Infeld equation is a differential consequence of the eikonal
equation [3], we also constructed wide classes of exact solutions of the Born—Infeld equation.
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