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The energy spectra of the novel version of the graphene-

based Fibonacci superlattices (SL) are calculated. The 

new quasiperiodical factor is considered. The SL is built 

of the graphene nanoribbons (GNR) and the quasi-

periodicity is formed due to the fact that different ribbons 

are used as individual elements of the SL and are placed 

along the lattice growth axis in accordance with the Fib-

onacci inflation rule. In one case, the SL is composed of 

the smooth-edges and the metal-like armchair NR and we 

propose to use the metal-like and the semiconductor arm-

chair NR for another case. It is shown that: 1) the differ-

ence in values of the quantized transverse quasi-

momentum of electrons for different NR is fully enough 

to form an effective quasi-periodic modulation in the 

given structure (no additional factors are needed), and the 

range of the ribbon widths for this purpose is determined; 

2) it is important that this range is suitable for practice. 

We analyze also the dependence of the energy spectra of 

the studied structure on the geometric parameters of the 

superlattice as well as on the external electrostatic poten-

tial. Attention is drawn, in particular, that in each Fibo-

nacci generation there is the Dirac superlattice gap. Vary-

ing the nanoribbons width one can change the spectra in-

vestigated flexibly. The conductance of the structure 

studied is also calculated. The results obtained can be 

useful in determining the optimum parameters of devices 

of the graphene-based nanoelectronics. 

 
1 Introduction In recent years, much attention has 

been paid to the study of graphene and various graphene-

based structures. This is due to non-trivial properties of 

graphene, such as a linear dispersion law for the quasi-

particles, whose behavior at low energies is described by 

an equation similar to the Dirac-Weyl one, unusual quan-

tum Hall effect, the property of chirality, the Klein tunnel-

ing, high mobility, ballistic transport, unusual quality in the 

superconducting state (in particular, the presence of specu-

lar Andreev reflection) etc. [16]. It should also be borne in 

mind that graphene is a promising material in modern elec-

tronics in terms of replacing the silicon technology, the de-

velopment of which has reached its limit for the graphene 

one. One of the priority directions is to study the various 

possibilities of regulation of the energy spectrum of the 

graphene-based structures. To achieve of this goal one can 

use, in particular, the graphene nanoribbons (see. e.g. [7-

8]). Interest in the study of graphene nanoribbons is con-

nected primarily with the fact that they can be used to form 

an energy gap; there is no such gap in the pristine graphene, 

and its presence is essential for performing of the gra-

phene-based structures as a transistor-type devices. 

At the same time it is known that the semiconductor 

superlattices (SL) are widely used in order to regulate the 

energy spectrum (see e.g. [8]). The literature widely re-

ported the study of graphene SL of different types: strictly 

periodic, disordered, lattices with defects, etc. [14-27]. The 

quasi-periodic structures, such as the Fibonacci, the Tew-

Morse chains and others, occupy a special place among the 

graphene structures. This is due to their unusual properties, 

such as the self-similarity, the Cantor nature of the energy 

spectrum et al. (see e.g. [9-13]). Spectra of graphene super-

lattices are characterized, in particular, by the presence of a 

number of forbidden bands among which is the so-called 

Dirac superlattice gap having a certain original properties 

[16-17]. 

In this paper, we study the energy spectra of the gra-

phene nanoribbons that (spectra) are formed under the in-

fluence of quasi-periodic factor. Three kinds of nanorib-

bons are taken into consideration: the metal-like and semi-

conductor armchair ribbon and the so called smooth-edges 

one. To create the quasiperiodic modulation we use the 

metal-like armchair (element a) and the smooth-edges rib-

bons (element b) as the elements for one type of the SL 

and the metal-like armchair (element a) and the semicon-

ductor ribbons (element b) for another type.   

It is shown that the quasi-periodic arrangement of the 

above combination of ribbons as the various elements of 

the superlattice can be used as the quasi-periodic factor. 

We focused at the Fibonacci superlattices since they are 

the most studied, classical quasi-periodic structure, to 

which most of the works on the quasi-periodic themes are 
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devoted. Since the purpose of this work is to identify the 

main features of the energy spectra of the Fibonacci super-

lattices, built on the basis of armchair-graphene nanorib-

bons, we carry out the evaluations in a relatively simple 

model – not accounting for the presence of defects, bound-

aries, more precise dispersion law, the interaction of elec-

trons, etc.       

 

2 Model and formulae Consider the graphene su-

perlattice composed of the two different elements of a and 

b, which are arranged along the 0x axis in the direction of 

the SL chain. Elements of a and b are made of graphene 

nanoribbons of such width (linear dimension along the axis 

0y) Lm, Ls, Lsm which provides the formation of metal-like 

(m), semiconductor (s) and smooth-edges (sm) nanorib-

bons.  The external electrostatic potential of value of Ua 

and Ub can be supplied to the elements a and b respective-

ly. 

Superlattice is constructed according to the Fibonacci 

inflation rule: a → b, b → ab, so that, for example, for the 

fourth generation, we have: R4 = abaab. We consider two 

cases: in one of these, the areas with attached thereto non-

zero potentials Ua and Ub (potential barriers) are directly 

adjacent to one another, and in another case, the quantum 

wells (that is areas with the fixed zero potential U = 0) of 

width w, are placed between the barriers.  As will be seen, 

the spectra of these two kinds of SL have some significant 

differences. 

The wave functions of the quasiparticles in the struc-

ture under consideration can be found from the masless Di-

rac-Weyl equation: 

[vF(σ,p)+U(x)Î]Ψ=ΕΨ,  (1) 

where vF is the  Fermi velocity, p = (px, py)  the momentum 

operator, σ = (σx, σy), σx, σy the Pauli matrices for the pseu-

dospin. Let us enumerate the different areas of the SL by 

the symbol j (j = 1,2,3 ...) and assume that the electrostatic 

potential inside each barrier is constant, that is, we consid-

er the rectangular barriers. Taking into account the transla-

tional invariance of solutions relative to the axis 0y and 

presenting it as a sum of plane waves moving in forward 

and backward directions along the axis 0x, the solution of 

equation (1) for the structure under consideration can be 

written as 

1 1
Ψ

    
    
   

    

iq x -iq xjn jn
(x) = a e +b e -+n jn jn gg jnjn ,     

 (2)
 

(in this and subsequent formulae units ћ = vF = 1 are 

adopted), top line refers to the graphene sublattice A, lower 

- to B, the index n is the mode number that corresponds to 

the size quantized transverse quasi-momentum knj, quasi-

electrons dispersion law has the form 

2
jnk

2
jq

j
UE  ,  (3) 
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for the semiconducting one 
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         (6) 

A significant difference in the values of the quasi-

momentum for the nanoribbons considered (for primary 

modes) suggests that this difference can provide the effec-

tive quasi-periodic modulation in the system. (But note that 

the calculations performed show that the difference in val-

ues of k for the armchair semiconductor and the smooth-

edges ribbons is insufficient for this purpose). 

The coefficient of the transmission of the quasi-

electrons through the lattice Tn can be found with the help 

of the transfer matrices method, using the technique of the 

mode matching of the eigenfunctions at the barrier-well 

boundaries. Energy range for which Tn ≈ 1, forms the al-

lowed bands, and gaps correspond to the values of Tn << 

1. As this procedure is well covered in the literature (see. 

e.g. [15-27]), we can immediately proceed to analyzing the 

results obtained. 

 

3 Results and discussion Fig. 1 shows the de-

pendence of log T1 by the fourth generation on energy E 

for the fourth Fibonacci generation for considered SL 

based on the metal-like and the semiconductor graphene 

armchair nanoribbons with the parameters: Lm ≈ 36,9 nm, 

Ls ≈ 35,18 nm, dm ≈ 16,24 nm, ds ≈ 15,74 nm, w ≈ 32,48 

nm, the external potential is zero, n = 1, i.e. this is the 

spectrum for the first mode (for convenience, the geomet-

rical dimensions are given in nanometers and energy - in 

electron volts). In the spectrum, there is a clear trend to-

wards grouping of the spectral bands in the individual cells 

and the whole spectrum reveals a pronounced periodic 

character. Note that the density of the spectral lines (max-

ima, for example) in the fixed energy range increases with 

the width of elements a or b. The narrowing of gaps is ob-

served with energy increasing, so that the transmission ra-

tio asymptotically approaches to unity. This narrowing, 

however, is not a monotone one, the “wavy damped oscil-

lation” in Fig.1 is associated with such property of the 

spectra as their self-similarity (as in e.g. [23]). 

So, there are some parts of the spectrum, the structure 

of which is repeated periodically throughout the energy 
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scale - each of these fragments of the spectrum can be con-

ventionally considered as its period.  

 

 

 

 

 
 

Fig. 1. Dependence of the transmission coefficient T on 
energy E for the fourth Fibonacci generation. 

 

In the spectrum, it is possible to identify the periods of 

lesser and greater magnitude and one can select one of the-

se periods for the analysis. Spectra similar to that shown in 

Fig.1 are implemented for other Fibonacci sequences.  

The number of bands in each period, the width of each 

of them depends greatly on the one hand, the SL parame-

ters, and on the other, the iteration Fibonacci number.  

It is well known that the energy spectra in the gra-

phene-based structures can be conveniently controlled by 

an external electrostatic potential U. We assume that this 

potential of different magnitude is attached to the SL ele-

ments of a: Ua , and to the elements of b: Ub. It is also 

known that the wide gaps (and the largest number of gaps) 

is formed in superlattices in the vicinity of the potential 

barrier ceiling (U). This in particular is confirmed for the 

structure considered in this paper, as indicated in Fig. 2, 

which depicts the transmission spectrum for the 4
th

 Fibo-

nacci generation for SL constructed of metal-like and the 

semiconductor armchair NR with the potential values Ua = 

0,4 eV, Ub = 1,6 eV, other parameters: mL 36,9 nm, Ls ≈ 

35,18 nm, md 16,24, sd 15,74 nm, w = dm, n = 1. We 

accepted values Ua и Ub, which differ significantly - in this 

case two groups of spectral lines are formed around the 

taken values of the electrostatic potential. When the values 

of Ua and Ub approach these groups of spectral lines also 

converge and eventually overlap; in this case the gaps wid-

en. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Dependence of the transmission coefficient T on 
energy E for the fourth Fibonacci generation for the case of 

various values of potentials Um and Us. 
 

 

 

The spectra of higher Fibonacci generations are highly 

fragmented, also the degree of fragmentation is significant-

ly increased with increase of the geometrical lattice param-

eters ds, dm. With increasing of the Fibonacci sequence the 

number of gaps increases and their total width grows also. 

 
 

 

 
 

 
 

 

 
 

 
 

Fig. 3. Trace map for the initial Fibonacci iterations for the 
SL with the value w=0. 

 

 

Fig. 3 shows the trace map of the spectra for the SL 

constructed of the metal-like and the semiconductor arm-

chair NR with w = 0 for the initial Fibonacci generations in 

the energy period CD for the following parameters: Lm ≈ 

29,5 nm, Ls ≈ 24,1 nm, md  16,24 nm, sd 15,74 nm, ex-

ternal potential U = 0,5 eV, n = 1. 

It can be seen that the spectra have a pronounced frac-

tal nature. The splitting of the allowed bands, starting with 

the third generation, is in accordance with the property of 

self-similarity of the Fibonacci spectra. Note that regard-

less of the values Ls, Lm there are forbidden areas in the 

spectra for the same energy in all generations. The number 

of bands in the minimum energy period CD is subjected to 

the inflationary Fibonacci rule zN =z N-1 + z N-2, where z N - 

the number of bands in the N-th sequence. For the parame-

E, eV 

0 0,4 0,8 
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ters of Fig. 3, the sequence of numbers zN, starting with the 

third generation, is as follows:  6, 8, 14.... . The subordina-

tion of the number of bands to the Fibonacci inflation rule 

is inherent for large periods of the spectra as well, but with 

its own set of values zN for each given period. 

It is known that the specific Dirac superlattice gap 

(DSLG) can be formed in the spectrum of graphene super-

lattices (see e.g. [16-17]). It is of special importance, in 

particular, due to the fact that it is insensitive to the disor-

der of geometric lattice parameters [17-18]. The DSLG ex-

ists also in the structure considered in this paper and it re-

veals the additional special property here: the splitting of 

the allowed bands due to the quasi-periodical factor is the 

most intensive in the vicinity of this gap, moreover the 

split bands are located symmetrically with respect to 

DSLG and the symmetric bands are of equal width. It is 

clearly seen at Fig. 4 where the trace map for the initial 

Fibonacci generations is plotted, SL being formed from the 

smooth-edges and the metal-like nanoribbons, the parame-

ters are as follows: w=0, mL 36,9 nm, Lsm ≈ 34,7 nm, 

md 16,24 nm, dsm ≈15,1nm, U = 0,6 eV, n = 1. 

 

 

Fig. 4. Trace map for the SL formed of the smooth-edges 
and the metal-like nanoribbons. 

 

We see that the splitting of bands takes place in ac-

cordance with the property of self-similarity. The number 

of bands in the subsequent generations is subjected to the 

Fibonacci inflation rule and are equal to 4, 6, 10, 16 in the 

2, 3, 4, 5 iterations.      

 Position of the middle of DSLG can be found using 

the following equation: 

)Tr(M)cos(k nN
2

1
 ,   (7) 

where k – Bloch quasi-momentum, ℓN  – lattice period for 

the N-th Fibonacci generation, Mn – matrix equal to the 

product of the transfer matrices corresponding to elements 

of the SL which forms this generation, e.g., for the third 

generation M3 = MaMbMa. (see e.g. [17]). For an arbitrary 

Fibonacci generation N, one can obtain for 
NDЕ from the 

formula (7) 

                             U δ d +U da N a b b
=D

N δ d + dN a b

E ,                   (8)  (8) 

where    
  

  
, Na ,Nb the number of relevant elements in 

this generation. If        , ms dd  then the valu-

e 
NDЕ does not depend on N and equals U.  It is obvious 

that as N increases N  tends to a certain constant value and 

so the value
NDЕ  may significantly depend on the genera-

tion number only for the primary sequences, but for higher 

generations 
NDЕ  is practically independent of N. For the 

parameters of Fig. 3, the value ЕD ≈ U = 0,5 eV. A charac-

teristic feature of the DSLG is that it is insensitive to the 

lattice period. This is true for both addressed in this paper 

types of superlattices: with w=0 and w≠0. Fig. 5  which 

shows a spectrum for the fourth Fibonacci generation 

demonstrates that the Dirac gap remains in place, while 

others (Bragg ones) shift; the solid line corresponds to the 

value of the lattice constant (dm+w) equal to 48,1 nm, 

dashed  – 32,1 nm, values of Lm ≈ 36,9 nm, Ls ≈ 35,2 nm. 

SL is formed of the metal-like and the semiconductor arm-

chair ribbons. 

     The comparison of trace-maps depicted in Fig.3 and 

Fig.4 for two kinds of SL, namely composed of the metal-

like armchair GNR and the smooth-edges ribbons (Fig.4) 

and metal-like GNR and the semiconductor armchair rib-

bons (Fig.3), shows that the difference between the values 

of the transverse quasi-momentum for these two kinds of 

SL is essential enough for creating the different quasi-

periodical energy spectra. 

Let us now analyze briefly some features of the spectra 

of  superlattices considered with the fixed quantum wells, 

that is, those in which between elements a and b ( with the 

applied potentials Ua and Ub respectively), there is a region 

with the zero potential - the quantum well with a finite 

width w ≠ 0. Note that three types of resonances are 

formed in this type of SL, namely, barrier, “well” and 

mixed ones [26, 27]. In this case, we should make some 

corrections to the above results. Thus, the number of gaps 

increases in the fixed energy range (for example, in the 

minimal period of the spectrum), besides their number in-

creases substantially with increasing of the quantum well 
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width. Accordingly, the set of numbers zN in each period of 

the spectrum changes. The position of the Dirac band also 

changes, and in the case of an approximate equality of the 

quantum well and barrier width the value of ED ≈ U / 2. 

Note that with increasing of the quantum well width the 

magnitude of the superlattice Dirac gap is reduced, but the 

adjacent gaps expand.  

 

 
 

Fig. 5. Transmission spectra for the fourth Fibonacci gene-
ration for various magnitudes of the SL period d: values d1 

≈  48,1nm and d2 ≈ 32,1nm refer to quantities Т1 and Т2   
respectively. 

 

Fig. 6 shows the trace map for the SL composed of the 

metal-like and the semiconductor armchair NR with the 

following parameters: for figure 6.1 mL 36,9 nm, Ls ≈ 

35,2 nm, for figure 6.2 Lm ≈ 29,5 nm, Ls ≈ 24,1 nm, other 

parameters for these figures are equal: md  16,24 nm, 

sd 15,74 nm, w=dm, external potential U = 0,5 eV, n = 1. 

Number of bands in this energy range is subject to Fibo-

nacci inflation rule and for primary sequences is equal to: 

2, 3, 5, 8 .... The nature of trace maps in figures 6.1 and 6.2 

are the same but the width of allowed (prohibited) bands 

depends essentially on the values of the nanoribbons width 

Lm,  Ls. 

 

 
 
Fig. 6.1. 

 

 

 

 
Fig. 6.2. Trace map for the initial Fibonacci generations for 

the SL (w ≈ dm)  with various nanoribbon width: for Fig. 

6.1  Lm ≈ 36,9 nm; Ls ≈ 35,2 nm; for Fig. 6.2  Lm ≈ 29,5 nm, 

Ls ≈ 24,1 nm. 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Trace maps for superlattices with different width of 

the barriers and the quantum wells (the third Fibonacci se-

quence). 

 

        Fig. 7 presents several trace maps for various values 

of the parameters of the superlattice formed, as for Fig. 3, 

of the metal-like and the semiconductor armchair nanorib-

bons, and this figure illustrates the dependence of the trace 

maps of the structure considered in this work on the barrier 

and quantum well width (in the direction of the SL growth, 

0x-direction). It is seen that the gaps width, their configu-

ration and the location of bands on energy scale depend 

significantly on both the barrier and the quantum well 

width. The trace maps in Fig. 7 refer to the third Fibonacci 

generation with the following barrier widths: for the first 

trace map – as in Fig. 3,  for the second one – 1.5 and for 

the third one - 2 times larger than for Fig. 3 (these first 

three trace maps correspond to the superlattice without the 

quantum well, i.e. w=0). The potential Ua=Ub=U equals to 

0.08 eV. The middle of the Dirac superlattice gap is locat-

ed at a point ED=U=0.08 eV; we took the energy interval 

[0, 0.48 eV], so that the trace maps for energies E>ED are 

exposed. The  gaps widen essentially with the barrier width 

E, eV 

E, eV 

E, eV 

4 

0,24 0,48 Е, eV 

3 

2 

1 

0 

n 
ED 

0,12 0,36 
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increasing; the concentration of gaps in the vicinity of the 

Dirac SL gap is observed. 

       The fourth trace map in Fig. 7 refers to the superlattice 

containing the quantum well of the finite width which is 

twice lesser than the barrier width for the second trace map 

in Fig. 7 (still the third Fibonacci sequence is considered). 

The comparison of the second and the fourth trace maps in 

Fig. 7 shows, in particular, that the presence of the quan-

tum well changes the configuration of the energy bands 

significantly; the number of the gaps increases.  

       Thus the spectra of the structure considered demon-

strate the strong dependence on the geometrical parameters 

of the superlattice as well as on the potential value U. We 

would like to note that, in general, the spectra investigated 

are not regular, however we can choose such sets of the pa-

rameters involved for which the spectra are regular and 

may be symmetrical with respect to the Dirac superlattice 

gap. Note also that the width of the Dirac SL gap depends 

on the parameters value and it is lesser than the width of 

some other (Bragg) gaps for various values of the parame-

ters involved.  

        The conductance of the structures similar to that in-

vestigated in this work is known to be often used to ana-

lyze the transport properties of such systems – this is the 

quantity which can be measured in practice. And it is con-

venient to consider the dimensionless conductance G* (see 

e.g. [28] and references therein) which can be expressed 

via the transmission coefficient with the help of the known 

Landauer formulae (for low temperatures): 

  
                       G*=∑    .   (9) 

 

Fig. 8 presents the dependence of the dimensionless con-

ductance G* on energy E for the two types of the superlat-

tice considered: containing a quantum well (w ≠ 0), Fig. 

8.2, and for the SL without a quantum well (w=0), Fig. 8.1. 

The values of the parameters in Fig. 8.2 are the same as for 

the fourth trace map in Fig. 7; the value of the potential 

barrier width for Fig. 8.1 is the same as for the second 

trace map in Fig. 7 and the quantum well width is in 1.5 

times lesser. The character of the G* (E) dependence is in 

general analogous to the transmission rates vs energy de-

pendence. For energies which correspond with the Dirac 

superlattice gap the conductance has the minimal value: we 

see the pronounced minimum for energy E=ED in Fig. 8.1. 

This value of ED remains the same with the change of the 

lattice period w+d, but it is very sensitive to the change of 

the quantity w/d. Thus, varying the SL parameters, in par-

ticular, the lattice ones w and d, we can flexibly control the 

conductance of the system under consideration. 

 

 

 
 

 
 

 G* 

 
 

Fig. 8.1.  Dependence of the dimensionless conductance    
on energy for the SL without the quantum well (the third 

Fibonacci sequence). 

 

 
Fig. 8.2. Dependence of the dimensionless conductance    
on energy for the SL containing the quantum well (the 

third Fibonacci sequence). 

. 

 

4 Conclusion In this paper, we calculate the trans-

mission coefficient of the quasi-electrons through the Fib-

onacci superlattice built of the graphene armchair metal-

like and semiconductor nanoribbons or of the metal-like 

and the smooth-edges NR; the transmission spectra for the 

initial Fibonacci generations are presented. These spectra 

substantially depend on the size of nanoribbons in the di-

rection transverse to the lattice chain direction L. The op-

timum values of L for the first mode are in the range of 

several tens of nanometers. The spectra demonstrate the 

property of periodicity depending on the quasi-electron en-

G* 

 

G* 



 7 

 

  

1 

2 

3 
4 

5 
6 

7 

8 
9 

10 
11 

12 
13 

14 

15 
16 

17 
18 

19 

20 
21 

22 
23 

24 
25 

26 

27 
28 

29 
30 

31 

32 
33 

34 
35 

36 
37 

38 

39 
40 

41 
42 

43 

44 
45 

46 
47 

48 
49 

50 

51 
52 

53 
54 

55 

56 
57 

ergy; bands of the allowed (prohibited) energy values are 

grouped into individual cells, the structure of which is re-

peated periodically. The number of energy bands inside 

each period are subjected to the Fibonacci inflation rule. A 

spectrum is also significantly dependent on the external 

electrostatic potential applied to the elements of the SL as 

well as on the nanoribbons width in the direction of the su-

perlattice growth. In every Fibonacci generation, there is 

the superlattice Dirac gap the position of which is con-

trolled by the geometric parameters of the lattice, and by 

the value of the electrostatic potential. The similar energy 

range (with the same property as the Dirac gap has) is also 

observed in the conductance vs energy dependence of the 

structure investigated. 
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Captions to figures 

 
 

Fig. 1. Dependence of the transmission coefficient T on 

energy E for the fourth Fibonacci generation. 
 

 
Fig. 2. Dependence of the transmission coefficient T on 

energy E for the fourth Fibonacci generation for the case of 

various values of potentials Um and Us. 
 

 
Fig. 3. Trace map for the initial Fibonacci iterations for the 

SL with the value w=0. 

 

 

Fig. 4. Trace map for the SL formed of the smooth-edges 
and the metal-like nanoribbons. 

 
Fig. 5. Transmission spectra for the fourth Fibonacci gene-

ration for various magnitudes of the SL period d: values d1 

≈  48,1nm and d2 ≈ 32,1nm refer to quantities Т1 and Т2   
respectively. 

 

Fig. 6.1, 6.2. Trace map for the initial Fibonacci genera-

tions for the SL (w ≈ dm)  with various nanoribbon width: 

for Fig. 6.1  Lm ≈ 36,9 nm; Ls ≈ 35,2 nm; for Fig. 6.2  Lm ≈ 

29,5 nm, Ls ≈ 24,1 nm. 

 

Fig. 7. Trace maps for superlattices with different width of 

the barriers and the quantum wells (the third Fibonacci se-

quence). 

 

Fig. 8.1.  Dependence of the dimensionless conductance    
on energy for the SL without the quantum well (the third 

Fibonacci sequence). 

Fig. 8.2. Dependence of the dimensionless conductance    
on energy for the SL containing the quantum well (the 

third Fibonacci sequence). 

 

 

 


