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A new wide class of exact solutions of the gas dynamics equation 
•u + Auuo = 0 is obtained. 
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where a, b = 1 , 2 , . . . ,n . 
Some exact solutions of the two-dimensional equation 

(1) for the case A = 2 were found in [2] and of three-
and four-dimensional equations in [1,3]. In [4], the par-
tial solutions of equation (1) were constructed for the 
four-dimensional case by the use of symmetry reduction 
of equation (1) to the ordinary differential equations, 

In the present paper, a new wide class of exact so-
lutions to equation (1), which depends on two arbitrary 
harmonic functions, is constructed. It should be noted 
that these solutions are invariant under no subalgebra 
of the algebra F and, for this reason, they are not Lie's 
solutions. For constructing these solutions, we don't em-
ploy the notion of the Lie invariance of equation (1) [3]. 

1. Let us consider the first case n = 1. We shall seek 
a solution of equation (1) in the form u = a(xo)6(a;1), 
where functions a(x0) and 6(11) differ from constants. 
Substituting it into equation (1), we get 

a"b - ab" + Xaa'b2 = 0 . (2) 

A is an arbitrary real number different from zero, was 
the subject of investigation in papers [1-4]. The equa-
tion (1) occurs in the theory of field and gas dynamics. 
It is shown in [1] that the maximal invariance algebra of 
equation (1) in Lie's sense is an algebra F generated by 
the vector fields 

d 

Here and below, a' and a" mean, respectively, the first 
and second derivatives of the function a(x0) with re-
spect to the variables xq. It follows from Eq. (2) that 
functions b, b2, b" are linearly dependent. If b" = 0, 
then a"b + Xaa'b2 — 0. Since functions b and b2 are 
linearly independent, it follows from the latter equation 
that a" = 0, aa! = 0. Prom it we find a — const that con-
tradicts the assumption. Therefore, b" ^ 0 and, hence, 
b" is a linear combination of functions b and b2, i.e., 
b" = ab + /3b2. Substituting it into equation (2), we 
obtain 

( a " - aa)b + {-/3a + Xaa')b2 = 0 , 

where 

a" - aa = 0, ~/3a + Xaa' = 0. 

The obtained system of equations possesses a trivial so-
lution a = 0 if a / 0. If a = 0, then a" = 0, Aa' = /?, 
b" = Pb2. Multiplying the function 6 by a real num-
ber /3/6 and the function a by 6//J, we may always take 
/9 = 6. Therefore, we have the following solutions of (!}: 

tl = ( J x o + „ ) p ( x 1). p " = 6 p 2 , 

, ' 6 \ 1 
w = I T ^ o + v \ ~ 2 > 

<3) 

•41 

where p(xi ) is the Weierstrass function with invariants 
52 = 0, <73 = Ci; v is an arbitrary real number. 

Solution (3) is a partial case of the more general so-
lution 

(5) U= ( - X o + V ) p (x i ) + f i x 1). 
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Substituting it into equation (1), we get / " = 6 p f , i.e., 
f ( x i ) is the Lamé function. Another generalization of 
solution (3) is of the form 

- l 

u = [ j x 0 + A p(xl) + f ^ o + v 

which may be transferred by a group transformation into 
the solution 

6 . , 2 
u = —XoP(Xi) + — . 

Solutions 

( s \ 1 ^ 3 
u - — XO + v — + Cx'l 

\X J XI 

, ' 6 A 1 2 

u ~ .\X° / x\ Xx0 

(6) 

(7) 

(8) 

u = + axi + P^j p(xi) + (Sxi + a ) f ( x 2 ) 

and 

U — [ -~Xq + axi + /3 ) + (Sxi + cr)x2, 

(9) 

(10) 

are generalizations of solutions (5) and (7), where p" = 
6p 2 , f" — 6 p f , and a, /3, ô, a are arbitrary real numbers. 

If n = 3, then we obtain the following generalizations 
of solutions (5) and (7): 

(11) 

u = ^ X 0 + G a ( x 1 , x 3 ) ) p ( x 3 ) + 

+ $ a ( x i , x 2 ) f ( x 3 ) , 

U = + Ga(x1,x2)J ^2) + 

+ $a(xi,x2)x%, 

where p" = 6p2, f" = 6 p / , 

82Ga l 02Ga d2$a ^ d2$a n 
— + -7TÔ- = U, - r - 5 - + = 0, 

(12) 

dx2 dx\ <9z2 dx% 

i.e., Ga(xi,x2) and $a(xi,x2) are a rb i t ra ry harmonic 
functions. A generalization of solutions (5) and (7) for 
the case n > 3 is quite obvious. 

3. Solution (7) for the case n > 1 can be general-
ized in the following way. Let us consider a subalge-
b r a {Ji2,Ji3,---,Jk-i,k,Pk+i,---,Pn) (k > 1) of the 
invariance algebra F for equation (1). The main in-
variants of the subalgebra L are functions u, uj0 = x0, 

= x2 + ... + x\. The ansatz u = (p(uo,uJi), corre-
sponding to the subalgebra L, reduces equation (1) to 
the equation 

(foo - 4wiipn - 2nipi + Xipipo — 0, 

where 

(13) 
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are generalizations of solution (4). 
2. Let us consider the case n > 1. If n = 2, then the 

solutions 

We seek a solution to equation (13) in the form 
ip = a(u>0)b(u>i), where funct ions a(cj0) and 6(wi) dif-
fer from constants. Substituting into equation (13), we 
come to 

a"b - 4uxab" - 2nab' + Xaa'b2 = 0 (14) 

Equation (14) means that the functions a", a, aa' are 
linearly dependent. Let us suppose the functions a, aa1 

are linearly independent. Then the function a" is a lin-
ear combination of a and aa': 

a"=aa + /3aa', a,/3e I.. 

Substituting a" into (14) end equating to zero coeffi-
cients at aa', we get fib + Xb2 = 0, i.e., b = const, that 
is impossible. The obtained contradiction proves that 
the functions a and aa' are linearly dependent, there-
fore, a' = fi = const. In view of this condition, equation 
(14) takes the form 

4wib" - 2Kb' - X/.ib2 = 0. (15) 

If we find a solution to (15), then the formula u = 
a(u>o)b(oji) will give us a solution to Equation (1). We 
shall seek a partial solution to Equation (15) in the form 
b = tu>f [5]. Substituting it into Equation (15), we come 
to 

4 a ( a - 1 ) f w f _ 1 + 2 K a t u j ^ ' 1 - X ^ t 2 u ) \ a = 0. (16) 

It follows from Equation (16) that a = — 1. Therefore, 

81 - 2Kt - A/it2 = 0. 

Hence, we A/i 
have constructed the solution 

8 — 2K XQ 

Solving this equation, we get t = ^ • 

u — 
X x2 + + xl 

(17) 
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of equation (1). 
The solution (17) is a partial case of the more general 

solution 
8 - 2k 

и = 
x 0 + /(wi). A x\ + • • • + x2

K 

Substituting it into Equation (13), we obtain 

« ? / " + £ « i / ' - ( 2 - £ ) / = 0. (18) 

The Equation (18) is the Euler equation. Its general 
solution is of the form [5] 

/ = C j w f 1 + C2UJ2
1~K/2. 

Hence, equation (1) possesses the solution 

— 2K xq + Cy 
и = 

.Л ХІ + --- + ХІ 
+ 

+ C2(xl + -.-+xl)2-«/2. (19) 

It is easy to see that solution (19) is a partial case of the 
more general solution 

(20) u — 

8 - 2k xq + Ca{xK+1,... ,xn) 

A x\ + • • • + x\ 
+ 

+ Фа • • • > 

where 

d2Ga d2Ga 

K+i 
+ • 
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дЧа Э2Фа 
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+ • 

dxl 

= 0, 

= 0. 

If we put к — 1 in (20), then we obtain solution (7). 
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ТОЧНІ РОЗВ'ЯЗКИ РІВНЯННЯ ГАЗОВОЇ ДИНАМІКИ 

А.Ф. Баранник, 1.1. Юрик 

Р е з ю м е 

Отримано новий широкий клас точних розв'язків рівнянь га-
зової динаміки Ои + Хиио = 0. 

ТОЧНЫЕ РЕШЕНИЯ УРАВНЕНИЯ ГАЗОВОЙ ДИНАМИКИ 

А.Ф. Баранник, И.И. Юрик 

Р е з ю м е 

Получен новый широкий класс точных решений уравнений га-
зовой динамики С)и + Хиио = 0-
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