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A new wide class of exact solutions of the gas dynamics equation
Ou + Auug = 0 is obtained.

The equation
Ou + Auug = 0, (1)
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X is an arbitrary real number different from zero, was
the subject of investigation in papers [1-4]. The equa-
tion (1) occurs in the theory of field and gas dynamics.
It is shown in [1] that the maximal invariance algebra of
equation (1) in Lie’s sense is an algebra F' generated by
the vector fields
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where a¢,b=1,2,...,n.

Some exact solutions of the two-dimensional equation
(1) for the case A = 2 were found in [2] and of three-
and four-dimensional equations in [1,3]. In [4], the par-
tial solutions of equation (1) were constructed for the
four-dimensional case by the use of symmetry reduction
of equation (1) to the ordinary differential equations,

In the present paper, a new wide class of exact so-
lutions to equation (1), which depends on two arbitrary
harmonic functions, is constructed. It should be noted
that these solutions are invariant under no subalgebra
of the algebra F' and, for this reason, they are not Lie’s
solutions. For constructing these solutions, we don’t em-
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ploy the notion of the Lie invariance of equation (1) [3].

1. Let us consider the first case n = 1. We shall seek
a solution of equation (1) in the form u = a(z¢)b(z,),
where functions a(zg) and b(z;) differ from constants.
Substituting it into equation (1), we get

a"b—ab" + aa'b? = 0. (2)

Here and below, a' and a” mean, respectively, the first
and second derivatives of the function ‘a(z¢) with re-
spect to the variables zo. It follows from Eq. (2) that
functions b, b%, b" are linearly dependent. If b" = 0,
then a”b + Xaa’b?> = 0. Since functions b and b% are
linearly independent, it follows from the latter equation
that a” = 0, aa’ = 0. From it we find @ = const that con-
tradicts the assumption. Therefore, b"” # 0 and, hence,
b" is a linear combination of functions b and b2, i.e.,
b" = ab+ Bb%. Substituting it into equation (2), we
obtain

(a" — aa)b + (—=Ba + Aaa')b® = 0,

where

a" —aa =0, —Ba+ Aaa' = 0.

The obtained system of equations possesses a trivial zo-
lution a = 0if @ # 0. If @« = 0, then a"” = 0, Xa' = 2,
b" = Bb:. Multiplying the function b by a real num-
ber 3/6 and the function a by 6/3, we may always take
B = 6. Therefore, we have the following solutions of {1

6
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where p(z;) is the Weierstrass function with invariants

g2 =0, g3 = Cy; v is an arbitrary real number.

Solution (3) is a partial case of the more general sn-
lution

u=(Ja+v) plen) + f(a1). (5)
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Substituting it into equation (1), we get f" = 6pf, i.e.,
f(z;) is the Lamé function. Another generalization of
solution (3) is of the form

6 12 (6 =k
u=(x.z‘o+l/ 50(-’121)4'? :\'270""/ )

which may be transferred by a group transformation into
the solution

6 2
= — —_, 6
u )‘zop(zl)+ P (6)
Solutions
1
e (9z0+u) = +Cad, )
A zi
6 1 2
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are generalizations of solution (4).
2. Let us consider the case n > 1. If n = 2, then the
solutions

= (%zo +az; + ,3) p(z1) + (6z1 + 0) f(z2) (9)

and

u= (ézo + az; + ﬁ) lz + (61 + 0)z3, (10)
A T35
are generalizations of solutions (5) and (7), where p' =
60?2, f"' = 6pf, and a, 8,4, o are arbitrary real numbers.
If n = 3, then we obtain the following generalizations
of solutions (5) and (7):

u = (§$O+Ga(m1;-’1’72)> p(z3) +

+ Dol 32)f(xs), (11)
u = (§$0+Ga(1‘1,$2)) ;%)4'
+ ®o(z1,72)23, (12)

where p'' = 6p?, f" = 6pf,
0’°Gy  0%°Gq 0%®,
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i.e., Go(z1,72) and ®,(z1,z2) are arbitrary harmonic

functions. A generalization of solutions (5) and (7) for
the case n > 3 is quite obvious.
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3. Solution (7) for the case n > 1 can be general-
ized in the following way. Let us consider a subalge-
bra (Ji2, /13, .+, Jk=1,ks Pes1,.-., Pn) (K > 1) of the
invariance algebra F' for equation (1). The main in-
variants of the subalgebra L are functions u, wy = =,
wi =z + ...+ z}. The ansatz u = p(wp,w1), corre-
sponding to the subalgebra L, reduces equation (1) to
the equation

oo — dwipr1 — 261 + Apipy = 0, (13)
where
Op Op
Yo = 6(4)0’ w1 = 6(4)1
0?p ¢
Yoo = (T)Z)g, Y11 = 5;}-%-

We seek a solution to equation (13) in the form
¢ = a(wo)b(w1), where functions a(wp) and b(w;) dif-
fer from constants. Substituting into equation (13), we
come to

a"b — 4w ab” — 2kab’ + Aaa'b* = 0. (14)

Equation (14) means that the functions a”, a, aa' are
linearly dependent. Let us suppose the functions a, ad’
are linearly independent. Then the function a” is a lin-
ear combination of a and aa’:

a,B €R.

Substituting a” into (14) end equating to zero coeffi
cients at aa’, we get b+ Ab? = 0, i.e., b = const, that
is impossible. The obtained contradiction proves that
the functions a and aa’ are linearly dependent, there
fore, a’ = p = const. In view of this condition, equation
(14) takes the form

4w b — 260 = Aub® = 0. (15)

a" = aa + Bad,

If we find a solution to (15), then the formula u =
a(wo)b(wy) will give us a solution to Equation (1). We
shall seek a partial solution to Equation (15) in the form
b = tw§ [5]. Substituting it into Equation (15), we come
to

da(a — Dtwd ™ + 2katwd ™! — Aut?w?® = 0. (16)
It follows from Equation (16) that a = —1. Therefore,
8t — 2kt — Aut® = 0.

8 — 2k
S5k,

m Hence, we

Solving this equation, we get t =
have constructed the solution
_8-2k To

Aozt 412 (1
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of equation (1).
The solution (17) is a partial case of the more general
solution
8 — 2k To
U=
A zi4e41?

+ f(w1)-

Substituting it into Equation (13), we obtain
2en , K i (. =
'+ swnf - (2-3) f=0.

The Equation (18) is the Euler equation. Its general
solution is of the form [5]

(18)

f=Cwit + C'zwf'"/z.

Hence, equation (1) possesses the solution
8 — 2k .’l:o- + Cy

A x4+ 22
+ Colz? +---+22)2 /2

(19)

It is easy to see that solution (19) is a partial case of the
more general solution

v = (20)
8 — 2k z9 + Co(Trit1y---rTn)
A 24412

+ Bol(Trtry.-- ,:En)(xf s g zi)Z—N/Z,

where

_q2£9‘_ 2L i 32Ga =0
0z2,, Oz2 ¢
0%, 0%®, _
m g ax% = 0.

If we put x = 1 in (20), then we obtain solution (7).
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TOYHI PO3B’SI3KM PIBHSHHS 'A30BOI IMHAMIKU

A.®. Bapannux, 1.I. FOpux
Pezome
OTpuMaHO HOBMH IMMPOKHMH KJIAC TOYHMX PO3B’A3KIB PiBHAHBL ra-

30B0Y auHamiku Ou + Auug = 0.

TOYHHBIE PEIIEHU S YPABHEHM S TA30BOV IUHAMUKU

A.®D. Bapannux, U.H. FOpux
Pesmome

IMonyyen HOBBIA MMPOKMH KJIACC TOYHBIX pemeHu#t ypasBHeHuH ra-
30Bo# auHamukyu Ou + Auug = 0.
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