Simulation of nanoparticle aggregation processin heterogeneous dispersed systems

Ескіз

Дата

2020

ORCID

DOI

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

Анотація

The stady of particle aggretion is relevant and stidied in chemical technology, biophysics, in solving problems of purification from aerosol or colloidal contaminants. The influence og nanoparticles on the aggregation kineticsds. The influence of nanoparticles on the aggregation kinetics of dispersed phases in suspension is considered. Models based on modifications of the particle dynamics method taking into account Van der Waals forces, gravity, Brownie and Stokes forces based on semi-empirical dependences for the rate of aggregation and disaggregation in collisions are used. Based on the analysis of the Smolukhovsky equation, molecular kinetic and localisotropic turbulence of Kolmogorov's theories, the dynamics of simultaneous turbulent and Brownian transfer to the process of "rapid coagulation" and the mechanism of influence of nanoparticles on their accumulative ability in colloidal heterogeneous dispersion are proposed. The developed equations for the rate of kinetic energy scattering in a suspension makes it possible to determine the particle dispersion in which the Brownian diffusion of particles in the coagulation mechanism predominates. This means, the more intense the process of mixing the suspension, the greater the role in the process of coagulation, precipitation and filtration play particles of the nanoscale range, which are included in the rapid movement of the vortex. These results are useful for practical application in control of intensity of coagulation processes in mixing devices. Conclusions. The mechanism of influence of nanoparticles on their aggregation ability in colloidal heterogeneous disperse systems is offered.

Опис

Ключові слова

coaugulation, aggregation, nanoparticles, diffusion, dissipation, кафедра технологічного обладнання та комп’ютерних технологій проектування, кафедра теплоенергетики та холодильної техніки

Бібліографічний опис

Simulation of nanoparticle aggregation processin heterogeneous dispersed systems / V. Olishevskyi, S. Vasylenko, E. Babko, S. Lementar // Ukrainian Journal of Food Science. – 2020. – Vol. 8, Is. 1. – Р. 95-104.

Колекції

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced