Properties of solutions of a heterogeneous differential equation of the second order

Ескіз

Дата

2019

ORCID

DOI

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

Анотація

Suppose that a power seriesA(z) =∑∞n=0anznhas the radius of convergenceR[A]∈[1,+∞].For a heterogeneous differential equationz2w′′+ (β0z2+β1z)w′+ (γ0z2+γ1z+γ2)w=A(z)with complex parameters geometrical properties of its solutions (convexity, starlikeness and close-to-convexity) in the unit disk are investigated. Two cases are considered: ifγ26=0 andγ2=0. Wealso consider cases when parameters of the equation are realnumbers. Also we prove that for asolutionfof this equation the radius of convergenceR[f]equals toR[A]and the recurrent formulasfor the coefficients of the power series off(z)are found. For entire solutions it is proved that theorder of a solutionfis not less then the order ofA(̺[f]≥̺[A]) and the estimate is sharp. The sameinequality holds for generalized orders (̺αβ[f]≥̺αβ[A]). For entire solutions of this equation thebelonging to convergence classes is studied. Finally, we consider a linear differential equation of theendless order∞∑n=0ann!w(n)=Φ(z), and study a possible growth of its solutions.

Опис

Ключові слова

differential equation, convexity, starlikeness, close-to-convexity, generalized order, convergence class, диференціальне рівняння, опуклість, зіркоподібність, близька до опуклості, узагальнений порядок, клас збіжності, кафедра вищої математики імені проф. Можара В. І.

Бібліографічний опис

Mulyava, O. Properties of solutions of a heterogeneous differential equation of the second order / O. Mulyava, M. Sheremeta, Yu. Trukhan // Carpathian Mathematical Publications. – 2019. – Vol. 11, Issue 2. – P. 379–398.

Колекції

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced