Статті
Постійне посилання колекціїhttps://dspace.nuft.edu.ua/handle/123456789/7522
Переглянути
2 результатів
Результати пошуку
Документ Провідність контакту: надпровідний графен із D-хвильовим спарюванням – нормальний графен із різними швидкостями Фермі(2018) Король, Анатолій Миколайович; Медвідь, Наталія Вікторівна; Вишняк, Володимир Вікторович; Літвинчук (Воронцова), Світлана ІванівнаУ рамках формалізму Блондера-Тинкхема-Клапвійка розраховується провідність контакту: нормальний графен — d-хвильовий надпровідний графен. Власні функції, коефіцієнти андріївського та нормального відбивання обчислюються за допомогою розв’язування рівняння Дірака-Боголюбова-де Жена. Вважається, що швидкості Фермі набувають різних значень в нормальній і надпровідній областях. Розглядається випадок щільового графена. Крім s-хвильового спарювання, яке розглядалось у [16; 17], можливими є також неконвенційні параметри порядку, такі як d-хвильова, р-хвильова і навіть f -хвильова надпровідності. У статті показано, що характеристики контакту для d-хвильової надпровідності є вельми чутливими до значення z = vn / vs де, vn та vs — швидкості Фермі в нормальній і надпровідній областях відповідно. Цей висновок стосується як андріївського, так і нормального відбивання. Показано, що перше з них є домінуючим процесом у формуванні провідності. Одержані результати є правильними для довільного значення орієнтаційного кута d-хвиль. Також розраховано і проаналізовано залежність електропровідності від зовнішнього електростатичного потенціалу та від енергії Фермі. Провідність G(E) розраховано з урахуванням того факту, що зовнішній електричний потенціал прикладено до надпровідної частини контакту, що розглядається. Характерною рисою залежності провідності від енергії Фермі квазіелектронів G(E) є наявність максимальних значень (піків) у залежності G(E). Крім того, крутизна кривих G(E) істотно залежить від значення швидкості Фермі vF . Проаналізовано залежність провідності від зовнішнього електростатичного потенціалу, а також від енергії Фермі для різних значень ротаційного кута. Одержані результати можуть бути корисними в пристроях електроніки на основі графену.Документ Тунельна прозорість графенової симетричної двор’єрної структури з бар'єрами швидкості фермі(2017) Король, Анатолій Миколайович; Літвинчук (Воронцова), Світлана Іванівна; Гуцало, Інна Володимирівна; Вишняк, Володимир ВікторовичРозраховано і проаналізовано коефіцієнт квантової трансмісії квазіелектронів Дірака-Вейля крізь два симетричні бар’єри із, квантовою ямою посередені. Бар’єри утворюються за рахунок різних швидкостей Фермі в різних областях структури і є прямокутними. Показано, що спектри трансмісії мають яскраво виражений тунельно-резонансний характер. Важливою рисою спектрів є те, що вони періодичні по всій шкалі енергій. Конфігурація дозволених і заборонених зон істотно залежить від значень швидкості Фермі в бар’єрах, а також від товщини бар’єрів і ширини квантової ями. Із цього випливає, що дана структура може ефективно слугувати енергетичним фільтром для квазіелектронів Дірака-Вейля, за допомогою якого зручно регулювати діапазон енергій для фільтрації носіїв заряду. The quantum transmission coefficient of the Dirac-Weil quasielectrons is calculated and analyzed through two symmetric barriers with a quantum well in the middle. Barriers are formed at the expense of different Fermi velocities in different regions of the structure and are rectangular. It is shown that the transmission spectra have a pronounced tunnel-resonant character. An important feature of the spectra is that they are periodic throughout the scale of energy. The configuration of the allowed and forbidden zones depends essentially on the values of the Fermi velocity in the barriers, as well as on the thickness of the barriers and the width of the quantum well. It follows that this structure can effectively serve as a power filter for Dirac-Weil quasielectrons, by which it is convenient to regulate the energy range for filtering charge carriers.