Статті
Постійне посилання колекціїhttps://dspace.nuft.edu.ua/handle/123456789/7522
Переглянути
4 результатів
Результати пошуку
Документ Особливості попередньої підготовки соломи пшеничної для гідролізу(2024) Булій, Юрій Володимирович; Сидоренко, Віталій ВолодимировичВ роботі наведено результати застосування різних способів проведення лужної попередньої підготовки лігноцелюлозної сировини (соломи пшеничної) до гідролізу в технології отримання паливного етанолу. Досліджені способи обробки в автоклаві та в роторно-пульсаційному апараті. Ефект обробки визначали за кількістю видаленого із сировини лігніну. Параметрами варіювання були тривалість обробки, концентрація лугу та температура процесу. Процес відокремлення лігніну та геміцелюлози від лігноцелюлозного комплексу є невід'ємною частиною попередньої підготовки сировини до гідролізу, проте є найбільш енерговитратним в процесі отримання паливного етанолу. Високі енерговитрати обумовлені тим, що цей процес відбувається за підвищених температур та тиску. В роботі наведено приклади основних способів попередньої підготовки рослинної біомаси до гідролізу: розчиненою сірчаною кислотою, лугами, амонійні методи та органосольвентна попередня обробка. Для інтенсифікації процесу попередньої обробки лужних розчинів соломи пшеничної запропоновано використання роторно-пульсаційного апарату. Метою даної роботи було порівняння впливу температури, концентрації лугу та часу обробки лужних розчинів соломи пшеничної в роторно-пульсаційному апараті (далі РПА) та автоклавування на процес видалення лігніну протягом попередньої підготовки сировини до гідролізу. Кислоторозчинний лігнін визначали у фільтраті, що залишився після вилучення кислотонерозчинного лігніну шляхом вимірювання оптичної густини. В ході роботи визначали залежність ступеню видалення лігніну від концентрації лугу, температури і тривалості обробки подрібненої сировини. Досліджекно, що використання РПА прискорює вивільнення лігніну порівняно з автоклавуванням для всього діапазону концентрацій лугу (0,5-4,0 % мас.). З підвищенням концентрації лугу від 0,5 до 4 % мас. вміст лігніну в зразку зменшується до 4,17 % від загальної кількості твердих речовин для автоклавування при 90 ºС; при автоклавуванні за температури 121 ºС вміст лігніну зменшувався до 2,98 %. Обробка соломи пшеничної за температури 90 ºС в РПА призводить до зменшення вмісту лігніну до 3,15 %. Оптамальними параметрами попередньої обробки сировини в РПА є концентрація лугу 4 % мас., температиура 90 оС, тримвалість 60 хв.Документ Очищення стічних вод теплоелектростанцій (ТЕС)(2023) Ободович, Олександр Миколайович; Сидоренко, Віталій Володимирович; Булій, Юрій Володимирович; Степаненко, Олеся ЄвгеніївнаПроведено аналіз стічних вод ТЕС, а також технологій та обладнання для їх очищення, для вибору раціонального режиму та визначення гранично допустимих концентрацій шкідливих речовин, характерних для енергетичної галузі перед скиданням у водойми. Склади перерахованих стоків різні та визначаються типом теплових електростанцій (ТЕС) та основного обладнання, його потужністю, видом палива, складом вихідної води, способом водопідготовки тощо. Наприклад, вода після охолодження конденсаторів турбін і охолоджувачів повітря зазвичай несе так звані теплові забруднення, оскільки її температура на 8-10 ºС вище температури води у вододжерелі. У деяких випадках вода, що охолоджує, може привносити в природні водойми сторонні речовини. Для зниження рівня забруднення ґрунту та ґрунтових вод на теплових електростанціях були побудовані локальні очисні споруди. Другий спосіб полягає в зборі стічних вод у спеціально створені ємності з подальшим очищенням за допомогою відстійників і фільтрів, в яких як фільтруючий матеріал використовується антрацит або активоване вугілля. В ІТТФ Національної академії наук розроблено багатоцільову аераційно-окислювальну установку (АОРТ) роторного типу, що працює за методом дискретно-імпульсного введення енергії (ДІВЕ). Ця установка дозволяє прискорити швидкість тепло- та масообміну хімічних реакцій у воді та водних системах на 25-30 %. Це дає можливість скоротити тривалість процесів очищення, знизити енергоспоживання у 2-3 рази та витрати реагентів на 20-25 %. Установка АОРТ використовується для очищення стічних вод від заліза, марганцю, сірководню, вуглекислого газу, сульфатів та нітратів. An analysis of TPP wastewater, as well as technologies and equipment for their treatment, for choosing a rational mode and determining the maximum permissible concentrations of harmful substances characteristic of the energy industry before discharge into reservoirs was carried out. The compositions of the listed effluents are different and are determined by the type of thermal power plants (TPP) and the main equipment, its capacity, type of fuel, composition of the source water, method of water treatment, etc. For example, water after cooling turbine condensers and air coolers usually carries so-called thermal pollution, since its temperature is 8-10 ºС higher than the temperature of water in the water source. In some cases, cooling water can introduce foreign substances into natural reservoirs. In order to reduce the level of soil and groundwater pollution, local wastewater treatment facilities were constructed at thermal power stations. The second method is the collection of waste water in specially created containers with subsequent purification using sedimentation tanks and filters, which have anthracite or activated carbon as a filter material. The ITTF of the National Academy of Sciences has developed a multi-purpose rotor-type aeration and oxidation plant (AORT), which works according to the method of discrete-pulse energy input (DPEI). This installation makes it possible to speed up the rate of heat and mass exchange of chemical reactions in water and water systems by 25-30 %. It makes it possible to reduce the duration of cleaning processes, reduce energy consumption by 2-3 times and consumption of reagents by 20-25 %. The AORT installation is used to clean sewage from iron, manganese, hydrogen sulfide, carbon dioxide, sulfates, and nitrates.Документ Пілотне тепломасообмінне обладнання для комплексної переробки рослинних відходів в біопаливо і побічні продукти(2022) Ободович, Олександр Миколайович; Сидоренко, Віталій Володимирович; Булій, Юрій Володимирович; Азаров, Сергій ПавловичВ статті представлено пілотне, дослідно-промислове тепломасообмінне обладнання для проведення комплексної переробки рослинних відходів сільськогосподарського виробництва в тверде (лігнін) та рідке (біоетанол) біопаливо і побічні продукти. Описано конструкцію та принцип роботи установки. Представлено результати досліджень по делігніфікації соломи пшеничної на пілотній дослідно-промисловій установці. The most significant source of biomass is wood and agricultural crops. The experience of a number of productions, in particular hydrolysis, allows solving the problem of the profitability of processing organic biomass by means of its deep complex processing with obtaining components, the cost of which exceeds the cost of the original organic raw materials, such as fuel. The main results of the complex processing of organic raw materials are increasingly energy-containing products, namely bioethanol and hydrolyzed lignin, which have energy characteristics comparable to fossil fuels. One of the stages of bioethanol production is the hydrolysis stage, which consists of the pretreatment of raw materials before hydrolysis and direct hydrolysis (acidic or enzymatic).Документ Інноваційні способи спільної переробки головної та сивушних фракцій у виробництві ректифікованого спирту і біоетанолу(2021) Булій, Юрій Володимирович; Юрик, Іван Іванович; Ободович, Олександр Миколайович; Сидоренко, Віталій ВолодимировичУ виробничих умовах досліджена ефективність сумісної перероб-ки головної та сивушних фракцій в розгінній колоні циклічної дії. Визначені оптимальні технологічні параметри ро-боти колони. Розроблені математич-на модель, програма управління і лю-дино-машинний інтерфейс (SCADA). Інноваційні способи дозволяють суттєво зменшити енерговитрати, ви-трати гарячої технологічної води на гідроселекцію, скоротити втрати ети-лового спирту, кількість спиртовмісних відходів, в повній мірі виділяти головні домішки, підвищити ступінь вилучен-ня і кратність концентрування летких домішок сивушних фракцій і отримати спирт сорту «Люкс». В умовах зростаючих цін на енергоносії розроб-ка і впровадження інноваційних енергозберігаючих технологій, що забезпечують збільшення виходу ректифікованого етилового спирту завдяки його вилу-ченню із спиртовмісних побічних продуктів і відходів виробництва, а також зменшення об’єму останніх є пріоритетним завданням у виробництві ректифікованого спирту і біоетанолу. Побічними продуктами ректифікації є головна фракція (ГФ) етилового спирту, сивушне мас-ло і сивушний спирт. Відомо, що вихід ректифікованого спирту на ти-пових брагоректифікаційних установках непрямої дії складає 93...95 % від кількості спирту, введеного з бражкою. Частина спирту (0,8...1,2 %) втрачається з відходами - бардою, лютерною водою та неконденсова-ними газами. з головною фракцією і сивушним спир-том із установки виводиться 3...5 % етилового спирту, з сивушним маслом 0,3...0,45 % умовного спирту. У безводній частині головної фракції, що відбирається із конденсатора епюраційної колони, міститься 92...97% етилового спирту і 3...8 % летких домішок. завдяки включенню в технологічну схему розгінної колони мож-ливо виділити основну масу етанолу, а головні домішки отримати у концентрованому вигляді, внаслідок чого вихід ректифікованого спирту підвищується від 94...96 до 98...98,5 % від спирту, введеного з бражкою. У складі сивушного спирту міститься 25 - 30 % води, 45...60 % етанолу, 5...20 % вищих спиртів С3 ... С5 (в основно-му пропанол і ізобутанол), ефірів 0,3...0,8 %, невелика кількість летких азотистих речовин, альдегідів і кислот. Сивушний спирт відбирають із 18, 20, 22 і 24-ї тарілок спиртової колони у кількості 0,8...2,5 % від спирту, введеного на її тарілку живлення. Сивушну фракцію відбирають з 5, 7, 9 і 11-ї тарілок цієї колони у кількості 3...5 % від кількості спирту, введеного на тарілку жив-лення. Вміст етилового спирту в ній становить 5...40 %.