Статті
Постійне посилання колекціїhttps://dspace.nuft.edu.ua/handle/123456789/7522
Переглянути
3 результатів
Результати пошуку
Документ Synergism of antimicrobial and anti-adhesive activity of Nocardia vaccinii IMV B-7405 surfactants in a mixture with essential oils(2020) Pirog, Tatiana; Kliuchka (Nykytyuk), Lilia; Kliuchka, Igor; Shevchuk, Tetiana; Iutynska, GalynaAn increase in the antibiotic resistance of pathogenic microorganisms has stimulated the search for alternatives to antibiotics substances of natural origin, which are essential oils (EO) and non-toxic biodegradable microbial surfactants. Aim. To investigate the antimicrobial and anti-adhesive activity of a mixture of EO and surfactants of Nocardia vaccinii IMV B-7405 synthesized on various oil-containing media. Methods. N. vaccinii IMV B-7405 was grown in medium containing as carbon source refined sunflower oil, oil after frying french fried potatoes, potato wedges and meat. The surfactants were extracted from supernatant of cultural liquid by modified Folch mixture. The antimicrobial action of tea tree, cinnamon and lemongrass EO, surfactants and their mixtures was determined by index of the minimum inhibitory concentration (MIC). Synergistic effect of surfactants and EO was evaluated by indicator of fractional inhibitory concentration. The degree of bacteria and fungi biofilms destruction under the action of surfactants, EO and their mixtures was determined by spectrophotometric method. Results. It was found that N. vaccinii IMV B-7405 surfactants synthesized on all oil-containing substrates showed a synergistic antimicrobial and anti-adhesive activity with the investigated EO. MIC of a surfactants and EO mixture against bacteria (Bacillus subtilis BT-2 (spores), Escherichia coli IEM-1, Staphylococcus aureus BMS-1) and yeast (Candida albicans D-6, Candida utilis BVS-65 and Candida tropicalis RE-2) were 2–20 μg/ml and were significantly lower than each compound separately (156–625 and 8–80 μg/ml for EO and surfactants, respectively). The destruction of bacterial and yeast biofilms under the action of a mixture of surfactants (20–40 μg/ml) and EO (20–40 μg/ml) was 1.3–2.9 times higher compared with using of each component separately at similar concentrations. Conclusions. The data presented the possibility of using a mixture of EO and surfactants not only to reduce their MIC, but also as effective antimicrobial and anti-adhesive agents.Документ Antimicrobial activity of a mixture of surfactants produced by Acinetobacter calcoaceticus IMV B-7241 with antifungal drugs and essential oils(2022) Pirog, Tatiana; Kliuchka, Igor; Kliuchka (Nykytyuk), LiliaIntroduction. The aim of the work was to study the effect of a mixture of surfactants synthesized by Acinetobacter calcoaceticus IMV B-7241 under various cultivation conditions with antifungal drugs (clotrimazole and fluconazole) and essential oils (cinnamon and lemongrass) on yeast of genus Candida. Material and methods. The cultivation of A. calcoaceticus IMV B-7241 was carried out in a basic medium that did not contain NaCl (medium 1), contained NaCl, 2.0 g/l (medium 2), contained NaCl, 2.0 g/l, and KCl, 1.0 g/l (medium 3). The surfactants were extracted from supernatant of cultural liquid by modified Folch mixture. Antimicrobial properties of the surfactants, antifungal drugs and essential oils were determined by index of the minimum inhibitory concentration (MIC). To assess the synergistic effect of a mixture of surfactants with antifungal drugs or essential oils the fractional inhibitory concentration index was used. Results and discussion. Surfactants synthesized by A. calcoaceticus IMV B-7241 on the basic medium were the most effective antimicrobial agents against the yeasts strains Candida albicans D-6, C. tropicalis RE-2 and C. utilis BVS-65 with MIC 22.5–45 μg/ml that were 2.6–17 times lower than the values determined for surfactants synthesized on modified media. At the same time, regardless of the strain cultivation in different media, all surfactants showed synergism of antifungal activity with clotrimazole, fluconazole, cinnamon or lemongrass essential oils. Thus, in the presence of surfactants synthesized on basic and modified media in a mixture with antifungal drugs, MIC of clotrimazole and fluconazole against the studied yeast test cultures decreased by 4–32 times. The use of a mixture of essential oils with surfactants synthesized by A. calcoaceticus IMV B-7241 growing in different media made it possible to reduce MIC of cinnamon and lemongrass oils against yeasts of Candida genus 4–18 and 8–32 times, respectively. At the same time, the index of fractional inhibitory concentration did not exceed 0.5, which indicates the synergism of anifungal activity between the studied compounds. Conclusion. The results confirm the possibility to reduce the minimum inhibitory concentrations of antifungal drugs or essential oils against members of genus Candida by their mixture with microbial surfactants.Документ Synergistic action on microorganisms of complex of essential oils with other biocides(2019) Pirog, Tatiana; Kliuchka, Igor; Kliuchka (Nykytyuk), LiliaThis review summarizes the published data and own results concerning synergism of antimicrobial activity of essential oils with antibiotics against bacteria of the family Enterobacteriaceae, genera Staphylococcus, Pseudomonas, Acinetobacter; with synthetic antifungal drug fluconazole, against yeast genus Candida; with surfactants of microbial origin, against bacterial and yeast test cultures. The synergistic effect of the complex of essential oils with antibiotics, enzymes, surfactants, etc. on biofilms was considered as well. Mixing essential oils with other biocides allowed to significantly decrease the minimum inhibitory concentrations of each component. The probability of emerging resistance to antibiotics was also reduced in the pathogenic bacteria and yeasts due to the antimicrobial action of essential oils that caused the dysfunction of cellular membrane of microorganisms. The prospects of implementing complex essential oils with antibiotic nisin in the food industry, and with other antibiotics in veterinary medicine are discussed. В огляді узагальнено опубліковані дані та власні результати щодо синергізму антимікробної дії ефірних олій з антибіотиками проти бактерій родини Enterobacteriaceae, родів Staphylococcus, Pseudomonas, Acinetobacter; з синтетичним протигрибковим препаратом флуконазолом, проти дріжджів роду Candida; з поверхнево-активними речовинами мікробного походження, проти бактеріальних і дріжджових тест-культур. Розглянуто також синергічний вплив комплексу ефірних олій з антибіотиками, ферментами, поверхнево-активними речовинами тощо на біоплівки. Змішування ефірних олій з іншими біоцидами дозволило значно знизити мінімальні інгібуючі концентрації кожного компонента. Вірогідність виникнення резистентності до антибіотиків була також знижена у патогенних бактерій і дріжджів завдяки антимікробній дії ефірних олій, які викликали дисфункцію клітинної мембрани мікроорганізмів. Обговорено перспективи впровадження комплексних ефірних олій з антибіотиком низином у харчову промисловість, а з іншими антибіотиками – у ветеринарію.