Статті

Постійне посилання колекціїhttps://dspace.nuft.edu.ua/handle/123456789/7522

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 29
  • Документ
    Changes in structural units in wheat flour dough and bread with pumpkin seed protein concentrate and phospholipids
    (2024) Shevchenko, Anastasiia; Litvynchuk (Vorontsova), Svitlana
    The problem of the low nutritional value of bakery products made from wheat flour has been of interest for decades and causes the search for opportunities to increase it. In recent years, in view of the military aggression, the issue of the deterioration of the ecological and economic situation in Ukraine and the world has also become relevant, as a result of which food security has suffered a significant negative impact. The solution to this problem can be the inclusion in the recipe of bakery products from wheat flour sources of complete proteins, which, in addition to high biological value, will have a positive physiological effect on the human body. Such a source is pumpkin seed protein concentrate, which, in combination with a lipid component, will be useful for people with diseases of the gastrointestinal tract. It was established that the fractional composition of the pumpkin seed protein concentrate contains 20.4% of the water fraction, 2.8% of the salt fraction, 5.1% of the alcohol fraction, and mostly the alkaline fraction — 71.7%. Unlike wheat flour, this raw material does not contain gluten proteins, which will affect the formation of the gluten frame of the dough and its properties. Infrared spectra of raw materials indicated that the spectrum of wheat flour has a higher intensity of reflection than the spectrum of pumpkin seed protein concentrate. All three spectra have a unique character and mostly do not have coincident peaks in the entire range. This indicates a different composition and different nature of the studied raw materials. The available peaks on the spectra indicate the presence of a higher amount of lipids in the pumpkin seed protein concentrate than in wheat flour and non-gluten proteins, instead its protein substances form complexes with flour proteins and delay its development.
  • Документ
    Effect of complex plant supplement on shelf life of wheat bread
    (2024) Shevchenko, Anastasiia; Ivanišová, Eva; Kováčiková, Eva; Benešová, Lucia; Mykhonik, Larysa
    The purpose of the work was to determine the effect of the complex plant supplement on the preservation of freshness of bread. Complex plant supplement consisted of sunflower lecithin, rice flour, rice protein concentrate and dry lamium leaves which were added to recipe of wheat bread. Brittleness, firmness, water activity, amount of water absorbed by the crumb, deformation of the bread crumb, content of total polyphenols, phenolic acids, and flavonoids, as well as antioxidant activity and oxidative stability of bread were studied. It was proved that the crumb of wheat bread added with a complex plant supplement was less susceptible to deformation during 48 hours of storage and faster regained form. The brittleness of the developed product decreased compared to the control due to change in hydrophilic properties – water absorption capacity of the crumb. Studies of the hydrophilic properties of bread crumb showed that the developed bread had a higher water absorption capacity and lost its hydrophilic properties more slowly. The water activity index of bread with additives was lower compared to the control. After 48 hours of storage, the increase in the firmness of bread with added complex plant supplement was lower compared to the control, which indicates the ability to preserve the textural properties of bread. Determination of moisture bond forms in the crumb of bread showed that after 48 hours of storage the free moisture in the control bread was removed at a lower temperature – 92°C, while for the developed sample – at 105°C. It means that more energy is needed to remove free moisture from the developed bread. It was proved that the addition of rice flour, rice protein concentrate, sunflower lecithin and dry lamium leaves had a stable antioxidant effect in relation to the processes of free radical oxidation of lipids. An increase in the content of phenolic compounds, phenolic acids and flavonoids was found in breads after baking, and their decrease in the developed products during the storage process was more rapid, compared to the control. Therefore, the introduction of the complex plant supplement – rice flour, rice protein concentrate, sunflower lecithin and dry lamium leaves extended the shelf life of wheat bread and increased its antioxidant activity.
  • Ескіз
    Документ
    Utilization of plant processing wastes for enrichment of bakery and confectionery products
    (2023) Stabnikova, Elena; Shevchenko, Anastasiia; Stabnikov, Victor; Paredes-López, Oktavio
    In this mini-review some technologies proposed by Ukrainian scientists for utilization of plant processing waste to enrich bakery and confectionery products are present. Partial replacement of wheat flour with plant additives allowed to increase nutritional value of food products. Thus, replacement of wheat flour with 5–20% of pumpkin seed flour resulted in an increase of protein content by 13.9–55.5% and fiber content by 12.07–48.7% in bread in comparison with control one without additives. Replacement of wheat flour, 5–15%, with pumpkin cellulose increased the content of protein 1.1–1.4 times and dietary fiber in 1.4–2.2 times in comparison with control bread. Bread supplemented with oat bran, 5–15% instead of wheat flour had higher by 19.5–52.2% score of lysine than bread without plant additives. Waste from grape processing containing protein, lipids, fiber, minerals and polyphenols, could be successfully used in preparation of flourbased confectionery products. Grape seed powder could serve as a substitute of cocoa powder in confectionery coatings technologies. Grape seed cake powder and grape skin powder being used for partial replacement of wheat flour in biscuits enriched the product with dietary fiber, polyphenolic compounds, minerals and vitamins. Addition of flour from extruded sunflower seed kernels in preparation of gingerbread allows to enrich it with valuable nutrients and improve its technological characteristics. Wastes from the processing of plant materials contain valuable substances and can be used in the preparation of functional products. It is essential to maintain and preferentially increase the high quality of products; thus, it is necessary to replace wheat flour with a plant additive in amounts not exceeding 10%.
  • Ескіз
    Документ
    Research and comparative analysis of the qualitative parameters of food powders produced from grain raw materials using an improved jet mill
    (2022) Changgao, Sun; Olkhovikov, Oleh; Xiaojin, Gao; Marynin, Andriy; Sichen, Zhang; Shevchenko, Anastasiia; Botong, Sun; Yue, Zhao; Marynin
    The object of the study is samples of food powders obtained by grinding the products of the collection and processing of a number of grain crops, using air-grinding technology in an improved jet mill. One of the most important problems of the modern food industry is that for the production of flour from cereals endosperm is used while the most important nutrients are found in shells and the germ of the grain. As a result of its grinding in conventional mills, common at existing mills, large pieces of bran and a large variation in the particle size of the grinding products are obtained, and this method is energy-intensive. According to the authors, the best solution to ensure truly whole grain grinding – that is, grinding grains with shells – is air grinding in jet mills. An improved jet mill makes it possible to grind both endosperm and grain shells into flour of the same consistency. From the same amount of raw material, therefore, it is possible to produce approximately 30 % more final grinding products. It is also important that the improved jet mill, under proven conditions, spends no more energy for grinding than a conventional mill. For research, the most popular products ground in such a mill were taken – wheat flour (black grain), buckwheat flour (from roasted buckwheat) and wheat bran. The first two products are whole grain milled, and the bran is produced from the collapse of wheat grown in accordance with the requirements of organic farming. Samples of powders obtained by grinding these products in an improved jet mill were compared with control samples – produced from similar raw materials in a roller mill – the most common design in service with mills. Physical indicators of the powders, thermophysical properties and biotechnological parameters were carried out. The obtained results allow to state that whole grain grinding produced on an improved jet mill has the characteristics better or close to standard types of flour produced on conventional mills. It allows them to be used without significant changes in the formulation of products with their addition (bakery, pasta, etc.), and also to create new dietary, healthy products rich in biologically active substances
  • Ескіз
    Документ
    The influence of rice protein concentrate on the technological process of wheat bread production
    (2023) Shevchenko, Anastasiia; Litvynchuk (Vorontsova), Svitlana; Koval, Olga
    Bakery products from wheat flour are low in protein and it is inferior and also absorbed at a low level. To solve this problem sources of complete proteins may be introduced into the formulation of bakery products. But animal proteins can be allergens. An alternative can be concentrates, hydrolysates and isolates of proteins of vegetable origin, particularly, obtained from rice. Microbiological, biochemical and conformational changes in dough and bread from wheat flour were influenced by adding rice protein concentrate. Gas-forming capacity of the dough with rice protein concentrate decreased by 8.3–20.8 % compared to the control sample where there was increase of the dosage. Gas formation occurred less intensively in the dough with rice protein concentrate, because fermentation was delayed due to a decrease in the availability of nutrients. The first peak on the gas formation graph in case of the dough with the addition of 4–8 % rice protein concentrate was seen after 65 minutes, in the control sample it was after 60 minutes. When adding 16 % of the additive, the first peak of gas formation was not clearly defined. The second peak of gas formation for control sample was observed after 150 min and for samples with rice protein concentrate a bit later and it was not clearly defined. Infrared spectra showed that relative reflection coefficient of samples with rice protein concentrate was lower both for dough after kneading and after fermentation. The addition of 4 and 8 % rice protein concentrate did not affect the amount of formed sugars, and the addition of 16 % reduced this indicator by 1.6 %. The amount of fermented sugars decreased by 3.0–7.8 %. So, changes during the technological process of bread-making can be followed due to the obtained results for obtaining bread with high protein content.
  • Ескіз
    Документ
    Protein substances of oat bran and their influence on conformational transformations in dough and bread from wheat flour
    (2022) Shevchenko, Anastasiia; Litvynchuk (Vorontsova), Svitlana
    The aim of the work was to determine the degree of completeness of protein substances of oat bran and its influence on conformational transformations in the structure of dough semi-finished products and bread made from wheat flour. Oat bran, its amino acid composition and influence on the content of protein substances in bread were investigated. Conformational transformations of structural elements in dough and bread were investigated by infrared spectroscopy in the near-infrared region. The content of essential amino acids in oat bran is significantly higher than in premium wheat flour. The limiting amino acid in wheat flour is lysine, the amino acid score of which is 0.44. In oat bran the limiting amino acid is methionine, the amino acid score of which is 1.14, and the amino acid score of lysine is much higher than in wheat flour – 1.62. The limiting amino acid in bread is lysine, the amino acid score of which is 0.46. With an increase in the percentage of replacement of wheat flour with oat bran, the amino acid score of lysine increased by 19.5–52.2%. This indicates that the protein of this raw material helps to increase the level of essential amino acids in bread, which enriches its protein profile. The obtained spectra of the dough samples after kneading showed that the introduction of oat bran does not cause conformational changes in the dough system, since not enough time passed for the interaction of the biopolymers of the raw materials. The infrared spectra of the dough at a wavelength of 2100 nm showed that the dietary fibers of oat bran delay the development of the gluten network, the structure of the protein matrix of the dough with bran will be less stable and more weakened than that of the control sample. The introduction of oat bran with a higher content of protein, dietary fiber and a complete amino acid profile into the recipe of wheat bread helps to improve the biological value of bread with this raw material. However, the deterioration of the development of the gluten framework of the dough, and therefore of the specific volume, porosity and dimensional stability of bread, requires the use of technological methods to minimize the negative impact of bran on the quality of finished bakery products.
  • Ескіз
    Документ
    Influence of pumpkin cellulose on conformational transformations in dough and bread from wheat flour
    (2023) Shevchenko, Anastasiia; Litvynchuk (Vorontsova), Svitlana; Drobot, Vira; Shevchenko, Oleksandr
    The aim of the present study was to determine the effect of pumpkin cellulose addition to wheat flour on conformational transformations in the structure of dough and bread. The granulometric composition, functional and technological properties, and amino acid composition of pumpkin cellulose were compared with those of premium grade wheat flour. The influence of pumpkin cellulose in combination with phospholipids on conformational transformations in the structure of dough and bread was studied by method of infrared spectroscopy in the range of near-infrared regions. It was found that 96% of the particles of wheat flour of the premium grade passed through a sieve with holes of 132 microns, the remaining 4% – through a sieve with holes of 260 microns. Pumpkin cellulose was much coarser, because all 100% of its particles remained on a sieve (hole size 670 microns). Moisture binding capacity of pumpkin cellulose was 3.6 times higher, and moisture retaining capacity was 2.8 times higher than of wheat flour due to the presence of a significant amount of fibers. The amino acid score of lysine (the limiting amino acid in wheat flour) was 0.44. The amino acid score of methionine (the limiting amino acid in pumpkin cellulose) was 3.16, and the amino acid score of lysine was much higher than in wheat flour 3.49. Partial replacement of wheat flour with pumpkin cellulose (5–15%) increased this indicator for lysine by 6.5–15.2%. It was found that infrared spectra of dough samples after kneading (control sample and sample with the partially flour replacement by pumpkin cellulose) practically overlapped throughout the range of wavelengths. During the fermentation process conformational changes of functional groups occurred intensively as well as changes in structural and mechanical properties. The dough ball of the control sample thinned faster. Shape-retaining ability improved with increasing replacement percentage of wheat flour with pumpkin cellulose. The partial replacement of wheat flour with pumpkin cellulose enhanced the biological value of bread and changed the structural and mechanical properties improving shape-retaining ability of dough but decreasing dimensional stability of bread.
  • Ескіз
    Документ
    Changes in structural units in dough and bread from wheat flour with the addition of pumpkin cellulose in combination with phospholipids
    (2023) Shevchenko, Anastasiia; Litvynchuk (Vorontsova), Svitlana; Drobot, Vira
    Unfavorable ecological and food security situation in the world causes frequent spread of diseases of the gastrointestinal tract. In particular, the number of cases of irritable bowel syndrome is increasing, especially among the young working population. Diet therapy, which includes increasing the amount of dietary fiber in combination with phospholipids, is effective for the prevention of these diseases. A perspective raw material with a high content of dietary fibers is pumpkin cellulose, which can be added to the recipe of bakery products instead of part of wheat flour. The aim of the work was to find the effect of pumpkin cellulose in combination with sunflower lecithin on the conformational changes of the structure of dough and bread from wheat flour and the completeness of assimilation of products with this raw material by the organism. It was established that the infrared spectra of wheat flour, pumpkin cellulose and sunflower lecithin differ in reflection intensity and character. In the process of dough fermentation, the conformational transformations deepened with an increase in the amount of replacement of wheat flour with pumpkin cellulose, and the reflection coefficient increased. For bread samples, the reflectance coefficient was lower compared to dough, but there were almost no differences in the location of the spectra. In general, the biological value of samples of bread with additives was lower than the control sample, however, the high content of dietary fibers in pumpkin cellulose makes it a promising raw material for enriching bakery products with a valuable nutrient and giving bread health properties. The rational amount of replacing wheat flour with pumpkin cellulose is no more than 7 %, taking into account the decrease in the biological value of bread with this raw material.
  • Ескіз
    Документ
    Conformational changes in dough and bread from wheat flour with the addition of oat bran in combination with phospholipids
    (2023) Shevchenko, Anastasiia; Litvynchuk (Vorontsova), Svitlana; Drobot, Vira
    The purpose of the research was to determine the influence of oat bran in combination with sunflower lecithin on conformational changes in the structure of dough semi-finished products and bread made from wheat flour. After kneading the dough, no conformational changes were observed, and during the fermentation process, they deepened with an increase in the percentage of replacement of wheat flour with oat bran. The spectra of bread had a lower reflectance than the dough samples both after kneading and during fermentation. The protein of such bread is more fully used for anabolic needs by the body. The biological value of bread with oat bran is higher, which makes them a promising raw material not only from the point of view of enriching bakery products with valuable nutrients, but also of a higher degree of their digestibility
  • Ескіз
    Документ
    Protein substances of rice flour and its use in wheat bread technology
    (2023) Shevchenko, Anastasiia
    Rice flour contains less amount of total protein than wheat flour, but it is more complete. It was established that the limiting amino acid of wheat flour is lysine, the amino acid score of which is 0.44, in rice flour it is 6.92. The limiting amino acid of rice flour is tryptophan, the amino acid score of which is 1.61. This indicates that rice flour is complete in terms of amino acid composition, since the amino acid score of the limiting amino acid is more than 1. The difference in the protein composition of wheat and rice flour affects the structure of the dough. The content of raw gluten decreased when replacing part of the wheat flour with rice flour by 21.6—55.6% with an increase in the percentage of replacement. The elasticity, hydration capacity of gluten and its extensibility also decreased. The limiting amino acid in all bread samples is lysine, but in the control sample its amino acid score is 0.46, while with an increase in the percentage of replacement of wheat flour with rice flour, it increased to 0.82—2.10. In the sample with the replacement of 20% flour and more, the amino acid score for lysine exceeds 1, which means that the protein of these samples is complete.